SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Omar Bilal) ;pers:(Ahrén Bo)"

Sökning: WFRF:(Omar Bilal) > Ahrén Bo

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlkvist, Linda, et al. (författare)
  • Defective insulin secretion by chronic glucagon receptor activation in glucose intolerant mice.
  • 2016
  • Ingår i: Journal of Endocrinology. - 1479-6805. ; 228, s. 171-178
  • Tidskriftsartikel (refereegranskat)abstract
    • Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized, however, the effect of long-term GCGR activation on beta-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2wk) infused with the stable glucagon analogue ZP-GA-1 and challenged with oral glucose and intravenous glucose +/- GLP-1. Islets were isolated to evaluate the insulin secretory response to glucose +/- GLP-1 and pancreases were collected for immunohistochemical analysis. Two-week ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP-1. Also, we observed increased beta-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of beta-cell function during development of type 2 diabetes.
  •  
2.
  • Ahlkvist, Linda, et al. (författare)
  • Evidence for neural contribution to islet effects of DPP-4 inhibition in mice
  • 2016
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 1879-0712 .- 0014-2999. ; 780, s. 46-52
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that neural mechanisms may contribute to effects of the incretin hormones, and, therefore, also to the effects of dipeptidyl peptidase (DPP-4) inhibition. We therefore examined whether muscarinic mechanisms are involved in the stimulation of insulin secretion by DPP-4 inhibition. Fasted, anesthetized mice were given intraperitoneal saline or the muscarinic antagonist atropine (5mg/kg) before duodenal glucose (75mg/mouse), with or without the DPP-4 inhibitor NVPDPP728 (0.095mg/mouse), or before intravenous glucose (0.35g/kg) with or without co-administration with GLP-1 or glucose-dependent insulinotropic polypeptide (GIP) (both 3nmol/kg). Furthermore, isolated islets were incubated (1h) in 2.8 and 11.1mM glucose, with or without GIP or GLP-1 (both 100nM), in the presence or absence of atropine (100µM). Duodenal glucose increased circulating insulin and this effect was potentiated by DPP-4 inhibition. The increase in insulin achieved by DPP-4 inhibition was reduced by atropine by approximately 35%. Duodenal glucose also elicited an increase in circulating intact GLP-1 and GIP and this was augmented by DPP-4 inhibition, but these effects were not affected by atropine. Atropine did also not affect the augmentation by GLP-1 and GIP on glucose-stimulated insulin secretion from isolated islets. Based on these findings, we suggest that muscarinic mechanisms contribute to the stimulation of insulin secretion by DPP-4 inhibition through neural effects induced by GLP-1 and GIP whereas neural effects do not affect the levels of GLP-1 or GIP or the islet effects of the two incretin hormones.
  •  
3.
  • Alsalim, Wathik, et al. (författare)
  • Incretin and islet hormone responses to meals of increasing size in healthy subjects.
  • 2015
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 100:2, s. 561-568
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Postprandial glucose homeostasis is regulated through the secretion of glucagon-like peptide 1 (GLP-1) through stimulation of insulin secretion and inhibition of glucagon secretion. However, how these processes dynamically adapt to demands created by caloric challenges achieved during daily life is not known. Objective: To explore adaptation of incretin and islet hormones after mixed meals of increasing size in healthy subjects. Design: Twenty-four healthy lean subjects ingested a standard breakfast after an overnight fast followed, after four hours, by a lunch of different size (511, 743 and 1034 kcal) but with identical nutrient composition together with 1.5g paracetamol. Glucose, insulin, C-peptide, glucagon, intact glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) and paracetamol were measured after the meals. Main outcome measure: Area under the 180 min curve (AUC) for insulin, C-peptide, glucagon, GLP-1 and GIP and model- derived ß-cell function and paracetamol appearance. Results: Glucose profiles were similar after the two larger meals whereas after the smaller meal, there was a post-peak reduction below baseline to nadir of 3.8±0.1mmol/l after 75min (p<0.001). AUC for GLP-1, GIP, insulin and C-peptide were significantly higher by increasing the caloric load as was β-cells sensitivity to glucose. In contrast, AUC glucagon was the same for all three meals, although there was an increase in glucagon after the postpeak glucose reduction in the smaller meal. The 0-20 min paracetamol appearance was increased by increasing meal size. Conclusion: Mixed lunch meals of increasing size elicit a caloric dependent insulin response due to increased β-cell secretion achieved by increased GIP and GLP-1 levels. The adaptation at larger meals results in identical glucose excursions, whereas after a lower caloric lunch the insulin response is high resulting in postpeak suppression of glucose below baseline.
  •  
4.
  •  
5.
  • Andersen, Birgitte, et al. (författare)
  • Fibroblast growth factor 21 prevents glycemic deterioration in insulin deficient mouse models of diabetes.
  • 2015
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 1879-0712 .- 0014-2999. ; 764, s. 189-194
  • Tidskriftsartikel (refereegranskat)abstract
    • In type 1 diabetes, there is a rapid loss of glycemic control immediately after onset of the disease. We aimed to determine if the deterioration of glycemic control that occurs early after the onset of insulin-deficient diabetes could be blunted by treatment with recombinant fibroblast growth factor 21 (FGF21). Normal C57BL/6J mice made diabetic by a single high dose injection of streptozotocin (STZ) were randomized to receive twice daily subcutaneous injection of vehicle or recombinant human FGF21 at doses of 0.3 and 1.0mg/kg for 10 days. Body weight was recorded daily and 5h fasted glucose, insulin, glucagon, free fatty acids and ketones were determined at 6 and 10 days post-randomization. The increase in fasting plasma glucose induced by STZ in untreated mice was prevented with FGF21 at 0.3mg/kg BID. In contrast, at 1.0mg/kg BID, FGF21 did not prevent the rise in plasma glucose after STZ. At the end of the study, plasma glucagon was significantly higher in the diabetic group treated with FGF21 1.0mg/kg BID than in the untreated group. This was not seen for the group treated with FGF21 0.3mg/kg BID. There were significant dose dependent reductions in plasma free fatty acids with FGF21 treatment but no significant change in plasma ketones (β-hydroxybutyrate). FGF21 treatment did not have significant effects on body weight in lean insulin deficient mice. In conclusion, FGF21 prevents increases in glycaemia and has lipid lowering properties in mouse models of insulin deficient diabetes, although by increasing the dose increased glucagon levels are seen and hyperglycemia persists.
  •  
6.
  • Bugliani, Marco, et al. (författare)
  • DPP-4 is expressed in human pancreatic beta cells and its direct inhibition improves beta cell function and survival in type 2 diabetes
  • 2018
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 473, s. 186-193
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been reported that the incretin system, including regulated GLP-1 secretion and locally expressed DPP-4, is present in pancreatic islets. In this study we comprehensively evaluated the expression and role of DPP-4 in islet alpha and beta cells from non-diabetic (ND) and type 2 diabetic (T2D) individuals, including the effects of its inhibition on beta cell function and survival. Isolated islets were prepared from 25 ND and 18 T2D organ donors; studies were also performed with the human insulin-producing EndoC-βH1 cells. Morphological (including confocal microscopy), ultrastructural (electron microscopy, EM), functional (glucose-stimulated insulin secretion), survival (EM and nuclear dyes) and molecular (RNAseq, qPCR and western blot) studies were performed under several different experimental conditions. DPP-4 co-localized with glucagon and was also expressed in human islet insulin-containing cells. Furthermore, DPP-4 was expressed in EndoC-βH1 cells. The proportions of DPP-4 positive alpha and beta cells and DPP-4 gene expression were significantly lower in T2D islets. A DPP-4 inhibitor protected ND human beta cells and EndoC-βH1 cells against cytokine-induced toxicity, which was at least in part independent from GLP1 and associated with reduced NFKB1 expression. Finally, DPP-4 inhibition augmented glucose-stimulated insulin secretion, reduced apoptosis and improved ultrastructure in T2D beta cells. These results demonstrate the presence of DPP-4 in human islet alpha and beta cells, with reduced expression in T2D islets, and show that DPP-4 inhibition has beneficial effects on human ND and T2D beta cells. This suggests that DPP-4, besides playing a role in incretin effects, directly affects beta cell function and survival.
  •  
7.
  • Liu, Liehua, et al. (författare)
  • Dipeptidyl peptidase-4 (DPP-4): Localization and activity in human and rodent islets.
  • 2014
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 453:3, s. 398-404
  • Tidskriftsartikel (refereegranskat)abstract
    • Dipeptidyl peptidase 4 (DPP-4) was recently found to be expressed in human and mouse islets with different expression patterns. However, whether species-dependent expression pattern is a generalized phenomenon and whether islet DPP-4 activity is regulated are not known. This study was conducted to investigate DPP-4 localization in several different species, and to examine the impact of glucose, incretin hormones, and insulin on islet DPP-4 activity. It was shown by immuofluorescent staining that there were two distinct species-specific expression patterns of islet DPP-4. The enzyme was expressed exclusively in α-cells in human and pig islets, but primarily in β-cells in mouse and rat islets. INS-1 832/13 cells also expressed DPP-4, and inhibition of DPP-4 enhanced insulin secretion in the presence of glucagon-like peptide-1 (GLP-1) in the cells. DPP-4 activity was remarkably robust when cultured with high glucose, incretin hormones, and insulin in mouse and human islets as well as INS-1 832/13 cells and islet DPP-4 activity and expression pattern was not altered in double incretin receptor knockout mice, compared to wild type mice. We conclude that islet DPP-4 is species-specifically expressed in α-cell and β-cell dominant patterns in several species and both patterns remained robust in enzyme activity during short-term metabolic challenge.
  •  
8.
  • Omar, Bilal A., et al. (författare)
  • Extrapancreatic contribution to glucose regulation by dipeptidyl peptidase 4 inhibition
  • 2016
  • Ingår i: Cardiovascular Endocrinology. - 2162-688X. ; 5:3, s. 82-85
  • Forskningsöversikt (refereegranskat)abstract
    • Dipeptidyl peptidase 4 (DPP-4) inhibitors are now being clinically utilized as glucose-lowering medications for the treatment of type 2 diabetes. Their widespread use and effective glucose-lowering properties have led to great interest in the mechanism of action of this class of drug. Although it has been well accepted that DPP-4 inhibitors lower glucose in part by increasing postprandial insulin secretion and suppressing fasting and postprandial hyperglucagonemia, recent studies have suggested that DPP-4 inhibition has other metabolically beneficial properties that are extrapancreatic in nature. This review explores the changes in DPP-4 expression and activity in metabolic disease states and discusses the metabolic consequences of DPP-4 inhibition on a systemic and tissue-specific basis. It concludes that there is considerable scientific evidence and a growing body of clinical evidence to suggest that DPP-4 inhibition would be beneficial in a number of metabolic disorders in addition to type 2 diabetes.
  •  
9.
  •  
10.
  • Omar, Bilal, et al. (författare)
  • Differential Development of Glucose Intolerance and Pancreatic Islet Adaptation in Multiple Diet Induced Obesity Models
  • 2012
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 4:10, s. 1367-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The C57BL/6 mouse fed a high fat diet is a common and valuable model in experimental studies of obesity and type 2 diabetes (T2D). Different high fat diets are used and in order to determine which diet produces a model most accurately resembling human T2D, they need to be compared head-to-head. Methods: Four different diets, the 60% high fat diet (HFD) and the 58% high fat-high sucrose Surwit diet (HFHS) and their respective controls, were compared in C57BL/6J mice using glucose tolerance tests (IVGTT) and the euglycemic clamp. Results: Mice fed a HFD gained more weight than HFHS fed mice despite having similar energy intake. Both high fat diet models were glucose intolerant after eight weeks. Mice fed the HFD had elevated basal insulin, which was not seen in the HFHS group. The acute insulin response (AIR) was unchanged in the HFD group, but slightly increased in the HFHS diet group. The HFHS diet group had a threefold greater total insulin secretion during the IVGTT compared to its control, while no differences were seen in the HFD group. Insulin sensitivity was decreased fourfold in the HFD group, but not in the HFHS diet group. Conclusion: The HFD and HFHS diet models show differential effects on the development of insulin resistance and beta cell adaptation. These discrepancies are important to acknowledge in order to select the appropriate diet for specific studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy