SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Omodei Nicola) "

Sökning: WFRF:(Omodei Nicola)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burgess, J. Michael, et al. (författare)
  • AN EXTERNAL SHOCK ORIGIN OF GRB 141028A
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 822:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB. 141028A, is analyzed under the guise of an external shock model. First, we fit the gamma-ray spectrum with a two-component photon model, namely, synchrotron+blackbody, and then fit the recovered evolution of the synchrotron nu F-nu peak to an analytic model derived considering the emission of a relativistic blast. wave expanding into an external medium. The prediction of the model for the nu F-nu peak evolution matches well with the observations. We observe the blast. wave transitioning into the deceleration phase. Furthermore, we assume the expansion of the blast. wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the nu F-nu peak, which is remarkable considering the simplicity of the analytic model. Under this scenario we argue that the distinction between prompt and afterglow emission is superfluous as both early-time emission and late-time emission emanate from the same source. While the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase.
  •  
2.
  • Burgess, J. Michael, et al. (författare)
  • AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 784:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent observations by the Fermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal gamma-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, E-p and kT, of these two components are correlated via the relation E-p proportional to T-alpha which varies from GRB to GRB. We present an interpretation in which the value of the index alpha indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.
  •  
3.
  • Crnogorcevic, Milena, et al. (författare)
  • Searching for axionlike particles from core-collapse supernovae with Fermi LAT's low-energy technique
  • 2021
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 104:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Light axionlike particles (ALPs) are expected to be abundantly produced in core-collapse supernovae (CCSNe), resulting in a ∼10-second long burst of ALPs. These particles subsequently undergo conversion into gamma rays in external magnetic fields to produce a long gamma-ray burst (GRB) with a characteristic spectrum peaking in the 30–100-MeV energy range. At the same time, CCSNe are invoked as progenitors of ordinary long GRBs, rendering it relevant to conduct a comprehensive search for ALP spectral signatures using the observations of long GRBs with the Fermi Large Area Telescope (LAT). We perform a data-driven sensitivity analysis to determine CCSN distances for which a detection of an ALP signal is possible with the LAT’s low-energy technique which, in contrast to the standard LAT analysis, allows for a a larger effective area for energies down to 30 MeV. Assuming an ALP mass ma≲10−10  eV and ALP-photon coupling gaγ=5.3×10−12  GeV−1, values considered and deduced in ALP searches from SN1987A, we find that the distance limit ranges from ∼0.5 to ∼10  Mpc, depending on the sky location and the CCSN progenitor mass. Furthermore, we select a candidate sample of 24 GRBs and carry out a model comparison analysis in which we consider different GRB spectral models with and without an ALP signal component. We find that the inclusion of an ALP contribution does not result in any statistically significant improvement of the fits to the data. We discuss the statistical method used in our analysis and the underlying physical assumptions, the feasibility of setting upper limits on the ALP-photon coupling, and give an outlook on future telescopes in the context of ALP searches.
  •  
4.
  • Guiriec, Sylvain, et al. (författare)
  • Detection of a thermal spectral component in the prompt emission of GRB 100724B
  • 2011
  • Ingår i: ASTROPHYSICAL JOURNAL LETTERS. - 2041-8205. ; 727:2, s. L33-
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of GRB 100724B with the Fermi Gamma-Ray Burst Monitor find that the spectrum is dominated by the typical Band functional form, which is usually taken to represent a non-thermal emission component, but also includes a statistically highly significant thermal spectral contribution. The simultaneous observation of the thermal and non-thermal components allows us to confidently identify the two emission components. The fact that these seem to vary independently favors the idea that the thermal component is of photospheric origin while the dominant non-thermal emission occurs at larger radii. Our results imply either a very high efficiency for the non-thermal process or a very small size of the region at the base of the flow, both quite challenging for the standard fireball model. These problems are resolved if the jet is initially highly magnetized and has a substantial Poynting flux.
  •  
5.
  • Ryde, Felix, et al. (författare)
  • Observational evidence of dissipative photospheres in gamma-ray bursts
  • 2011
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 415:4, s. 3693-3705
  • Tidskriftsartikel (refereegranskat)abstract
    • The emission from a gamma-ray burst (GRB) photosphere can give rise to a variety of spectral shapes. The spectrum can retain the shape of a Planck function or it can be broadened and have the shape of a Band function. This fact is best illustrated by studying GRB090902B. The main gamma-ray spectral component is initially close to a Planck function, which can only be explained by emission from the jet photosphere. Later, the same component evolves into a broader Band function. This burst thus provides observational evidence that the photosphere can give rise to a non-thermal spectrum. We show that such a broadening is most naturally explained by subphotospheric dissipation in the jet. The broadening mainly depends on the strength and location of the dissipation, the magnetic field strength and the relation between the energy densities of thermal photons and electrons. We suggest that the evolution in spectral shape observed in GRB090902B is due to a decrease in the bulk Lorentz factor of the flow, leading to the main dissipation becoming subphotospheric. Such a change in the flow parameters can also explain the correlation observed between the peak energy of the spectrum and low-energy power-law slope, a, a correlation commonly observed in GRBs. We conclude that photospheric emission could indeed be a ubiquitous feature during the prompt phase in GRBs and play a decisive role in creating the diverse spectral shapes and spectral evolutions that are observed.
  •  
6.
  • Vianello, Giacomo, et al. (författare)
  • The Multi-Mission Maximum Likelihood framework (3ML)
  • 2015
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Astrophysical sources are now observed by many different instruments at different wavelengths, from radio to high-energy gamma-rays, with an unprecedented quality. Putting all these data together to form a coherent view, however, is a very difficult task. Each instrument has its own data format, software and analysis procedure, which are difficult to combine. It is for example very challenging to perform a broadband fit of the energy spectrum of the source. The Multi-Mission Maximum Likelihood framework (3ML) aims to solve this issue, providing a common framework which allows for a coherent modeling of sources using all the available data, independent of their origin. At the same time, thanks to its architecture based on plug-ins, 3ML uses the existing official software of each instrument for the corresponding data in a way which is transparent to the user. 3ML is based on the likelihood formalism, in which a model summarizing our knowledge about a particular region of the sky is convolved with the instrument response and compared to the corresponding data. The user can choose between a frequentist analysis, and a Bayesian analysis. In the former, parameters of the model are optimized in order to obtain the best match to the data (i.e., the maximum of the likelihood). In the latter, the priors specified by the user are used to build the posterior distribution, which is then sampled with Markov Chain Monte Carlo or Multinest. Our implementation of this idea is very flexible, allowing the study of point sources as well as extended sources with arbitrary spectra. We will review the problem we aim to solve, the 3ML concepts and its innovative potential.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy