SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Osiecki L) "

Sökning: WFRF:(Osiecki L)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Virojanadara, Chariya, et al. (författare)
  • Substrate orientation : A way towards higher quality monolayer graphene growth on 6H-SiC(0001)
  • 2009
  • Ingår i: Surface Science. - : Elsevier. - 0039-6028 .- 1879-2758. ; 603:15, s. L87-L90
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of substrate orientation on the morphology of graphene growth on 6H-SiC(0 0 0 1) was investigated using low-energy electron and scanning tunneling microscopy (LEEM and STM). Large area monolayer graphene was successfully furnace-grown on these substrates. Larger terrace widths and smaller step heights were obtained on substrates with a smaller mis-orientation from on-axis (0.03 degrees) than on those with a larger (0.25 degrees). Two different types of a carbon atom networks, honeycomb and three-for-six arrangement, were atomically resolved in the graphene monolayer. These findings are of relevance for various potential applications based on graphene-SiC structures.
  •  
7.
  • Watcharinyanon, S., et al. (författare)
  • Hydrogen intercalation of graphene grown on 6H-SiC(0001)
  • 2011
  • Ingår i: Surface Science. - : Elsevier. - 0039-6028 .- 1879-2758. ; 605:17-18, s. 1662-1668
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic hydrogen exposures on a monolayer graphene grown on the SiC(0001) surface are shown to result in hydrogen intercalation. The hydrogen intercalation induces a transformation of the monolayer graphene and the carbon buffer layer to bi-layer graphene without a buffer layer. The STM, LEED, and core-level photoelectron spectroscopy measurements reveal that hydrogen atoms can go underneath the graphene and the carbon buffer layer and bond to Si atoms at the substrate interface. This transforms the buffer layer into a second graphene layer. Hydrogen exposure results initially in the formation of bi-layer graphene islands on the surface. With larger atomic hydrogen exposures, the islands grow in size and merge until the surface is fully covered with bi-layer graphene. A (root 3 x root 3)R30 degrees periodicity is observed on the bi-layer areas. ARPES and energy filtered XPEEM investigations of the electron band structure confirm that after hydrogenation the single pi-band characteristic of monolayer graphene is replaced by two pi-bands that represent bi-layer graphene. Annealing an intercalated sample, representing bi-layer graphene, to a temperature of 850 degrees C. or higher, re-establishes the monolayer graphene with a buffer layer on SiC(0001). (C) 2011 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy