SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pacini Giovanni) "

Sökning: WFRF:(Pacini Giovanni)

  • Resultat 1-10 av 39
  • [1]234Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jönsson, Tommy, et al. (författare)
  • A Paleolithic diet confers higher insulin sensitivity, lower C-reactive protein and lower blood pressure than a cereal-based diet in domestic pigs.
  • 2006
  • Ingår i: Nutrition & Metabolism. - : Karger. - 1743-7075. ; 3:Article nr. 39
  • Tidskriftsartikel (refereegranskat)abstract
    • A Paleolithic diet has been suggested to be more in concordance with human evolutionary legacy than a cereal based diet. This might explain the lower incidence among hunter-gatherers of diseases of affluence such as type 2 diabetes, obesity and cardiovascular disease. The aim of this study was to experimentally study the long-term effect of a Paleolithic diet on risk factors for these diseases in domestic pigs. We examined glucose tolerance, post-challenge insulin response, plasma C-reactive protein and blood pressure after 15 months on Paleolithic diet in comparison with a cereal based swine feed.
  •  
2.
  • Ahlkvist, Linda, et al. (författare)
  • Evidence for neural contribution to islet effects of DPP-4 inhibition in mice
  • 2016
  • Ingår i: European Journal of Pharmacology. - : Elsevier. - 1879-0712. ; 780, s. 46-52
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that neural mechanisms may contribute to effects of the incretin hormones, and, therefore, also to the effects of dipeptidyl peptidase (DPP-4) inhibition. We therefore examined whether muscarinic mechanisms are involved in the stimulation of insulin secretion by DPP-4 inhibition. Fasted, anesthetized mice were given intraperitoneal saline or the muscarinic antagonist atropine (5mg/kg) before duodenal glucose (75mg/mouse), with or without the DPP-4 inhibitor NVPDPP728 (0.095mg/mouse), or before intravenous glucose (0.35g/kg) with or without co-administration with GLP-1 or glucose-dependent insulinotropic polypeptide (GIP) (both 3nmol/kg). Furthermore, isolated islets were incubated (1h) in 2.8 and 11.1mM glucose, with or without GIP or GLP-1 (both 100nM), in the presence or absence of atropine (100µM). Duodenal glucose increased circulating insulin and this effect was potentiated by DPP-4 inhibition. The increase in insulin achieved by DPP-4 inhibition was reduced by atropine by approximately 35%. Duodenal glucose also elicited an increase in circulating intact GLP-1 and GIP and this was augmented by DPP-4 inhibition, but these effects were not affected by atropine. Atropine did also not affect the augmentation by GLP-1 and GIP on glucose-stimulated insulin secretion from isolated islets. Based on these findings, we suggest that muscarinic mechanisms contribute to the stimulation of insulin secretion by DPP-4 inhibition through neural effects induced by GLP-1 and GIP whereas neural effects do not affect the levels of GLP-1 or GIP or the islet effects of the two incretin hormones.
  •  
3.
  • Ahrén, Bo, et al. (författare)
  • Glucose effectiveness : Lessons from studies on insulin-independent glucose clearance in mice
  • 2021
  • Ingår i: Journal of Diabetes Investigation. - : Wiley-Blackwell. - 2040-1116. ; 12:5, s. 675-685
  • Forskningsöversikt (refereegranskat)abstract
    • Besides insulin-mediated transport of glucose into the cells, an important role is also played by the non-insulin-mediated transport. This latter process is called glucose effectiveness (acronym SG), which is estimated by modeling of glucose and insulin data after an intravenous glucose administration, and accounts for ≈70% of glucose disposal. This review summarizes studies on SG, mainly in humans and rodents with focus on results achieved in model experiments in mice. In humans, SG is reduced in type 2 diabetes, in obesity, in liver cirrhosis and in some elderly populations. In model experiments in mice, SG is independent from glucose levels, but increases when insulin secretion is stimulated, such as after administration of the incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. SG is reduced in insulin resistance induced by high-fat feeding and by exogenous administration of glucagon. Glucose-dependent (insulin-independent) glucose disposal is therefore important for glucose elimination, and it is also well regulated. It might be of pathophysiological relevance for the development of type 2 diabetes, in particular during insulin resistance, and might also be a target for glucose-reducing therapy. Measuring SG is essentially important when carrying out metabolic studies to understand glucose homeostasis.
  •  
4.
  •  
5.
  • Ahrén, Bo, et al. (författare)
  • Improved meal-related beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year.
  • 2005
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548. ; 28:8, s. 1936-1940
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE—To examine the effects of dipeptidyl peptidase-IV (DPP-4) inhibition on meal-related β-cell function and insulin sensitivity over 52 weeks in type 2 diabetes. RESEARCH DESIGN AND METHODS—In a 12-week core study, placebo (n = 51) or vildagliptin (n = 56; 50 mg OD) was added to metformin treatment (1.5–3.0 mg/day). A 40-week extension followed in 71 patients. Meal tests were performed at 0, 12, 24, and 52 weeks; glucose, insulin, and C-peptide were evaluated. RESULTS—In subjects completing 52 weeks with participation in all meal tests (n = 57), HbA1c (A1C) decreased in the vildagliptin/metformin group (VM group, n = 31) but increased in the placebo/metformin group (PM group, n = 26; between-group difference −1.0 ± 0.2%; P < 0.001; baseline of all subjects combined 7.7 ± 0.1%). Also, fasting glucose decreased in the VM group but increased in the PM group (difference −0.9 ± 0.3 mmol/l, P = 0.016; baseline 9.8 ± 0.3 mmol/l). Insulin secretion (postmeal suprabasal area under the 0- to 30-min C-peptide curve divided by the 30-min increase in glucose) was increased in the VM group but was reduced in the PM group (difference +0.011 ± 0.03 pmol/l 30 min/mmol/l, P = 0.018; baseline 0.036 ± 0.02). Insulin sensitivity during meal ingestion (oral glucose insulin sensitivity) increased in the VM group but was not altered in the PM group (difference +27 ± 4 ml · min−1 · m−2, P = 0.036; baseline 246 ± 6). Insulin secretion related to insulin sensitivity (adaptation index) increased in the VM group but decreased in the PM group (difference +3.2 ± 1.0, P = 0.040; baseline 9.1 ± 0.5). The change in adaptation index correlated to the change in A1C (r = −0.39, P = 0.004). CONCLUSIONS—This study presents evidence that DPP-4 inhibition by vildagliptin when added to metformin in type 2 diabetes over 52 weeks improves β-cell function along with improved postmeal insulin sensitivity.
  •  
6.
  •  
7.
  • Ahrén, Bo, et al. (författare)
  • The augmenting effect on insulin secretion by oral versus intravenous glucose is exaggerated by high-fat diet in mice.
  • 2008
  • Ingår i: Journal of Endocrinology. - : Society for Endocrinology. - 1479-6805. ; 197:1, s. 181-187
  • Tidskriftsartikel (refereegranskat)abstract
    • To study whether the incretin effect is involved in adaptively increased insulin secretion in insulin resistance, glucose was infused at a variable rate to match glucose levels after oral glucose (25 mg) in normal anesthetized C57BL/6J female mice or in mice rendered insulin resistant by 8 weeks of high-fat feeding. Insulin response was markedly higher after oral than i.v. glucose in both groups, and this augmentation was even higher in high-fat fed than normal mice. In normal mice, the area under the curve (AUC(insulin)) was augmented from 4.0+/-0.8 to 8.0+/-1.8 nmol/lx60 min by the oral glucose, i.e. by a factor of 2 (P=0.023), whereas in the high-fat fed mice, AUC(insulin) was augmented from 0.70+/-0.4 to 12.4+/-2.5 nmol/lx60 min, i.e. by a factor of 17 (P<0.001). To examine whether the incretin hormone glucagon-like peptide-1 (GLP-1) is responsible for this difference, the effect of i.v. GLP-1 was compared in normal and high-fat fed mice. The sensitivity to i.v. GLP-1 in stimulating insulin secretion was increased in the high-fat diet fed mice: the lowest effective dose of GLP-1 was 650 pmol/kg in normal mice and 13 pmol/kg in the high-fat diet fed mice. We conclude that 1) the incretin effect contributes by approximately 50% to insulin secretion by the oral glucose in normal mice, 2) this effect is markedly exaggerated in insulin-resistant mice fed a high-fat diet, and 3) this augmented incretin contribution in the high-fat fed mice may partially be explained by GLP-1.
  •  
8.
  • Alsalim, Wathik, et al. (författare)
  • Effect of single-dose DPP-4 inhibitor sitagliptin on β-cell function and incretin hormone secretion after meal ingestion in healthy volunteers and drug-naïve, well-controlled type 2 diabetes subjects
  • 2018
  • Ingår i: Diabetes, Obesity and Metabolism. - : Wiley-Blackwell. - 1462-8902. ; 20:4, s. 1080-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • To explore the effects of a single dose of the DPP-4 inhibitor sitagliptin on glucose-standardized insulin secretion and β-cell glucose sensitivity after meal ingestion, 12 healthy and 12 drug-naïve, well-controlled type 2 diabetes (T2D) subjects (mean HbA1c 43mmol/mol, 6.2%) received sitagliptin (100mg) or placebo before a meal (525kcal). β-cell function was measured as the insulin secretory rate at a standardized glucose concentration and the β-cell glucose sensitivity (the slope between glucose and insulin secretory rate). Incretin levels were also monitored. Sitagliptin increased standardized insulin secretion, in both healthy and T2D subjects, compared to placebo, but without increasing β-cell glucose sensitivity. Sitagliptin also increased active glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) and reduced total (reflecting the secretion) GIP, but not total GLP-1 levels. We conclude that a single dose of DPP-4 inhibition induces dissociated effects on different aspects of β-cell function and incretin hormones after meal ingestion in both healthy and well-controlled T2D subjects.
  •  
9.
  • Alsalim, Wathik, et al. (författare)
  • Incretin and islet hormone responses to meals of increasing size in healthy subjects.
  • 2015
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 1945-7197. ; 100:2, s. 561-568
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Postprandial glucose homeostasis is regulated through the secretion of glucagon-like peptide 1 (GLP-1) through stimulation of insulin secretion and inhibition of glucagon secretion. However, how these processes dynamically adapt to demands created by caloric challenges achieved during daily life is not known. Objective: To explore adaptation of incretin and islet hormones after mixed meals of increasing size in healthy subjects. Design: Twenty-four healthy lean subjects ingested a standard breakfast after an overnight fast followed, after four hours, by a lunch of different size (511, 743 and 1034 kcal) but with identical nutrient composition together with 1.5g paracetamol. Glucose, insulin, C-peptide, glucagon, intact glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) and paracetamol were measured after the meals. Main outcome measure: Area under the 180 min curve (AUC) for insulin, C-peptide, glucagon, GLP-1 and GIP and model- derived ß-cell function and paracetamol appearance. Results: Glucose profiles were similar after the two larger meals whereas after the smaller meal, there was a post-peak reduction below baseline to nadir of 3.8±0.1mmol/l after 75min (p<0.001). AUC for GLP-1, GIP, insulin and C-peptide were significantly higher by increasing the caloric load as was β-cells sensitivity to glucose. In contrast, AUC glucagon was the same for all three meals, although there was an increase in glucagon after the postpeak glucose reduction in the smaller meal. The 0-20 min paracetamol appearance was increased by increasing meal size. Conclusion: Mixed lunch meals of increasing size elicit a caloric dependent insulin response due to increased β-cell secretion achieved by increased GIP and GLP-1 levels. The adaptation at larger meals results in identical glucose excursions, whereas after a lower caloric lunch the insulin response is high resulting in postpeak suppression of glucose below baseline.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39
  • [1]234Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy