SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pagels Joakim) ;lar1:(liu)"

Sökning: WFRF:(Pagels Joakim) > Linköpings universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Neserin, et al. (författare)
  • Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix
  • 2018
  • Ingår i: Clinical Proteomics. - : Springer Science and Business Media LLC. - 1542-6416 .- 1559-0275. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. Methods: In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. Results: The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. Conclusion: Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The results suggested that the exposure causes an immediate effect on the proteome level involving acute phase proteins and mediators regulating lipid signaling. Proteases involved in maintaining the balance between the formation and degradation of extracellular matrix proteins are important key proteins in the induced effects.
  •  
2.
  • Lutic, Doina, et al. (författare)
  • Detection of Soot Using a Resistivity Sensor Device Employing Thermophoretic Particle Deposition
  • 2010
  • Ingår i: Journal of Sensors. - : Hindawi. - 1687-725X .- 1687-7268. ; 2010:421072
  • Tidskriftsartikel (refereegranskat)abstract
    • Results are reported for thermophoretic deposition of soot particles on resistivity sensors as a monitoring technique for diesel exhaust particles with the potential of improved detection limit and sensitivity. Soot with similar characteristics as from diesel exhausts was generated by a propane flame and diluted in stages. The soot in a gas flow at 240–270C∘ was collected on an interdigitated electrode structure held at a considerably lower temperature, 105–125C∘. The time delay for reaching measurable resistance values, the subsequent rate, and magnitude of resistance decrease were a function of the distance between the fingers in the electrodes and the degree of dilution of the soot containing flow. Soot deposition and subsequent removal by heating the sensor support was also performed in a real diesel exhaust. Good similarities between the behavior in our laboratory system and the real diesel exhaust were noticed.
  •  
3.
  • Malik, Azhar, et al. (författare)
  • A Potential Soot Mass Determination Method from Resistivity Measurement of Thermophoretically Deposited Soot
  • 2011
  • Ingår i: AEROSOL SCIENCE AND TECHNOLOGY. - : Taylor and Francis. - 0278-6826 .- 1521-7388. ; 45:2, s. 284-294
  • Tidskriftsartikel (refereegranskat)abstract
    • Miniaturized detection systems for nanometer-sized airborne particles are in demand, for example in applications for onboard diagnostics downstream particulate filters in modern diesel engines. A soot sensor based on resistivity measurements was developed and characterized. This involved generation of soot particles using a quenched co-flow diffusion flame; depositing the particles onto a sensor substrate using thermophoresis and particle detection using a finger electrode structure, patterned on thermally oxidized silicon substrate. The generated soot particles were characterized using techniques including Scanning Mobility Particle Sizer for mobility size distributions, Differential Mobility Analyzer-Aerosol Particle Mass analyzer for the mass-mobility relationship, and Transmission Electron Microscopy for morphology. The generated particles were similar to particles from diesel engines in concentration, mobility size distribution, and mass fractal dimension. The primary particle size, effective density and organic mass fraction were slightly lower than values reported for diesel engines. The response measured with the sensors was largely dependent on particle mass concentration, but increased with increasing soot aggregate mobility size. Detection down to cumulative mass as small as 20-30 mu g has been demonstrated. The detection limit can be improved by using a more sensitive resistance meter, modified deposition cell, larger flow rates of soot aerosol and modifying the sensor surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy