SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pagels Joakim) ;pers:(Assarsson Eva)"

Sökning: WFRF:(Pagels Joakim) > Assarsson Eva

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Dierschke, Katrin, et al. (författare)
  • Acute respiratory effects and biomarkers of inflammation due to welding-derived nanoparticle aggregates
  • 2017
  • Ingår i: International Archives of Occupational and Environmental Health. - : Springer Science and Business Media LLC. - 0340-0131 .- 1432-1246. ; 90:5, s. 451-463
  • Tidskriftsartikel (refereegranskat)abstract
    • Welders are exposed to airborne particles from the welding environment and often develop symptoms work-related from the airways. A large fraction of the particles from welding are in the nano-size range. In this study we investigate if the welders' airways are affected by exposure to particles derived from gas metal arc welding in mild steel in levels corresponding to a normal welding day. In an exposure chamber, 11 welders with and 10 welders without work-related symptoms from the lower airways and 11 non-welders without symptoms, were exposed to welding fumes (1 mg/m(3)) and to filtered air, respectively, in a double-blind manner. Symptoms from eyes and upper and lower airways and lung function were registered. Blood and nasal lavage (NL) were sampled before, immediately after and the morning after exposure for analysis of markers of oxidative stress. Exhaled breath condensate (EBC) for analysis of leukotriene B4 (LT-B4) was sampled before, during and immediately after exposure. No adverse effects of welding exposure were found regarding symptoms and lung function. However, EBC LT-B4 decreased significantly in all participants after welding exposure compared to filtered air. NL IL-6 increased immediately after exposure in the two non-symptomatic groups and blood neutrophils tended to increase in the symptomatic welder group. The morning after, neutrophils and serum IL-8 had decreased in all three groups after welding exposure. Remarkably, the symptomatic welder group had a tenfold higher level of EBC LT-B4 compared to the two groups without symptoms. Despite no clinical adverse effects at welding, changes in inflammatory markers may indicate subclinical effects even at exposure below the present Swedish threshold limit (8 h TWA respirable dust).
  •  
4.
  • Gren, Louise, et al. (författare)
  • Lung function and self-rated symptoms in healthy volunteers after exposure to hydrotreated vegetable oil (HVO) exhaust with and without particles
  • 2022
  • Ingår i: Particle and Fibre Toxicology. - : Springer Science and Business Media LLC. - 1743-8977. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Diesel engine exhaust causes adverse health effects. Meanwhile, the impact of renewable diesel exhaust, such as hydrotreated vegetable oil (HVO), on human health is less known. Nineteen healthy volunteers were exposed to HVO exhaust for 3 h in a chamber with a double-blind, randomized setup. Exposure scenarios comprised of HVO exhaust from two modern non-road vehicles with 1) no aftertreatment system ('HVOPM+NOx' PM1: 93 mu g-m(-3), EC: 54 mu g-m(-3), NO: 3.4 ppm, -NO2: 0.6 ppm), 2) an aftertreatment system containing a diesel oxidation catalyst and a diesel particulate filter ('HVONOx' PM1: similar to 1 mu g-m(-3), NO: 2.0 ppm, -NO2: 0.7 ppm) and 3) filtered air (FA) as control. The exposure concentrations were in line with current EU occupational exposure limits (OELs) of NO, -NO2, formaldehyde, polycyclic aromatic hydrocarbons (PAHs), and the future OEL (2023) of elemental carbon (EC). The effect on nasal patency, pulmonary function, and self-rated symptoms were assessed. Calculated predicted lung deposition of HVO exhaust particles was compared to data from an earlier diesel exhaust study. Results: The average total respiratory tract deposition of PM1 during -HVO(PM+ NO)x was 27 mu g-h(-1). The estimated deposition fraction of HVO PM1 was 40-50% higher compared to diesel exhaust PM1 from an older vehicle (earlier study), due to smaller particle sizes of the -HVOPM+ NOx exhaust. Compared to FA, exposure to -HVOPM+ NOx and -HVONOx caused higher incidence of self-reported symptoms (78%, 63%, respectively, vs. 28% for FA, p < 0.03). Especially, exposure to -HVOPM+ NOx showed 40-50% higher eye and throat irritation symptoms. Compared to FA, a decrement in nasal patency was found for the -HVONOx exposures (- 18.1, 95% CI: - 27.3 to - 8.8 L-min(-1), p < 0.001), and for the -HVOPM+ NOx (- 7.4 (- 15.6 to 0.8) L -min(-1), p = 0.08). Overall, no clinically significant change was indicated in the pulmonary function tests (spirometry, peak expiratory flow, forced oscillation technique). Conclusion: Short-term exposure to HVO exhaust concentrations corresponding to EU OELs for one workday did not cause adverse pulmonary function changes in healthy subjects. However, an increase in self-rated mild irritation symptoms, and mild decrease in nasal patency after both HVO exposures, may indicate irritative effects from exposure to HVO exhaust from modern non-road vehicles, with and without aftertreatment systems.
  •  
5.
  • Gren, Louise, et al. (författare)
  • Underground emissions and miners' personal exposure to diesel and renewable diesel exhaust in a Swedish iron ore mine
  • 2022
  • Ingår i: International Archives of Occupational and Environmental Health. - : Springer Science and Business Media LLC. - 1432-1246 .- 0340-0131.
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Underground diesel exhaust exposure is an occupational health risk. It is not known how recent intensified emission legislation and use of renewable fuels have reduced or altered occupational exposures. We characterized these effects on multipollutant personal exposure to diesel exhaust and underground ambient air concentrations in an underground iron ore mine.METHODS: Full-shift personal sampling (12 workers) of elemental carbon (EC), nitrogen dioxide (NO2), polycyclic aromatic hydrocarbons (PAHs), and equivalent black carbon (eBC) was performed. The study used and validated eBC as an online proxy for occupational exposure to EC. Ambient air sampling of these pollutants and particle number size distribution and concentration were performed in the vicinity of the workers. Urine samples (27 workers) were collected after 8 h exposure and analyzed for PAH metabolites and effect biomarkers (8-oxodG for DNA oxidative damage, 4-HNE-MA for lipid peroxidation, 3-HPMA for acrolein).RESULTS: The personal exposures (geometric mean; GM) of the participating miners were 7 µg EC m-3 and 153 µg NO2 m-3, which are below the EU occupational exposure limits. However, exposures up to 94 µg EC m-3 and 1200 µg NO2 m-3 were observed. There was a tendency that the operators of vehicles complying with sharpened emission legislation had lower exposure of EC. eBC and NO2 correlated with EC, R = 0.94 and R = 0.66, respectively. No correlation was found between EC and the sum of 16 priority PAHs (GM 1790 ng m-3). Ratios between personal exposures and ambient concentrations were similar and close to 1 for EC and NO2, but significantly higher for PAHs. Semi-volatile PAHs may not be effectively reduced by the aftertreatment systems, and ambient area sampling did not predict the personal airborne PAHs exposure well, neither did the slightly elevated concentration of urinary PAH metabolites correlate with airborne PAH exposure.CONCLUSION: Miners' exposures to EC and NO2 were lower than those in older studies indicating the effect of sharpened emission legislation and new technologies. Using modern vehicles with diesel particulate filter (DPF) may have contributed to the lower ambient underground PM concentration and exposures. The semi-volatile behavior of the PAHs might have led to inefficient removal in the engines aftertreatment systems and delayed removal by the workplace ventilation system due to partitioning to indoor surfaces. The results indicate that secondary emissions can be an important source of gaseous PAH exposure in the mine.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Hagerman, Inger, et al. (författare)
  • Effects on heart rate variability by artificially generated indoor nano-sized particles in a chamber study
  • 2014
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 88, s. 165-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Airborne particles are associated with increased morbidity and mortality due to respiratory and cardiovascular diseases in polluted areas. There is a growing interest in nano-sized particles with diameter < 100 nm and their potential health effects. Heart rate variability (HRV) is a noninvasive method for cardiovascular risk prediction in high prevalent groups. Aim of study: The aim was to evaluate the impact of nano-sized indoor air particles on HRV for healthy and adult females. Methods: All exposures were performed as controlled chamber experiments with particle exposure from burning candles, terpene + ozone reactions or filtered air in a double-blind cross over design. Twenty-two healthy females were investigated during 10 min periods at different exposures and the reactivity in high frequency (HF) spectral band of HRV were computed. Results: Heart rate was unchanged from baseline values in all groups during all experimental settings. HF power of HRV tended to increase during exposure to particles from burning candle while particles from terpene + ozone reactions tended to decrease HF power. Conclusions: Exposure to nano-sized particles of burning candles or terpene + ozone reactions results in different patterns of heart rate variability, with signs of altered autonomic cardiovascular control. Practical implications: This study indicates that the HRV method may be used for information on physiological responses of exposure to different nano-sized particles and contribute to the understanding of mechanisms behind health effects of particle exposures. (C) 2014 The Authors. Published by Elsevier Ltd.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy