SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pagels Joakim) ;pers:(McMurry Peter H.)"

Sökning: WFRF:(Pagels Joakim) > McMurry Peter H.

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dutcher, Dabrina D., et al. (författare)
  • Emissions from soy biodiesel blends: A single particle perspective
  • 2011
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 45:20, s. 3406-3413
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodiesel has recently reemerged as a common fuel. However, emissions from biodiesel combustion have been studied in much less detail than those from traditional petroleum-based diesel. In this experiment, emissions from the combustion of different fuel blends (BOO, B02, B20, B99, where the number after B indicates the percentage, by volume, of biodiesel in the fuel) in a VW TDi engine were analyzed by aerosol time-of-flight mass spectrometers (ATOFMS) for single-particle composition and vacuum aerodynamic size. The ATOFMS results show that the PAH molecular weight distribution is not significantly affected by the fuel composition, and that sulfates are reduced by increased biodiesel content. Octanedioic acid (a carbonyl species) is increased with increased biodiesel concentration. Clustering results from the single-particle spectra show that the particles fall in five main types by chemical composition. The aerodynamic size distribution of these individual clusters was also determined. These results also show that methods used to identify diesel particle emissions for source apportionment are not applicable when significant concentrations of biodiesel are used in fuels. (C) 2011 Elsevier Ltd. All rights reserved.
  •  
2.
  • Khalizov, Alexei F., et al. (författare)
  • Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor
  • 2009
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • The hygroscopic properties of submicron soot particles during internal mixing with gaseous sulfuric acid have been investigated using a combined tandem differential mobility analyzer (TDMA) and differential mobility analyzer-aerosol particle mass analyzer (DMA-APM) technique. Fresh particles exhibit no change in mobility size and mass at subsaturated conditions, whereas particles exposed to gaseous sulfuric acid (10(9)-10(10) molecule cm(-3), 12 s contact time) experience significant mobility size and mass changes with increasing relative humidity (RH). The DMA-APM measurements reveal that particles of all sizes exposed to H2SO4 vapor gain mass with increasing RH because of absorption of water by sulfuric acid coating. However, on the basis of mobility size measurements using TDMA, upon humidification H2SO4-coated soot agglomerates display distinct hygroscopic growth patterns depending on their initial size and the mass fraction of condensed sulfuric acid. While small particles experience an increase in their mobility sizes, larger particles exhibit a marked shrinkage due to compaction. We suggest that determination of the hygroscopic properties of soot particles using a TDMA alone can be inconclusive. Restructuring of the soot agglomerates and filling of the voids that accompany the condensation of water-soluble materials and subsequent water absorption lead to little or no observable changes in particle mobility size at subsaturated RH even for particles that contain aqueous coatings. Extrapolation of our experimental results to the urban atmosphere indicates that initially hydrophobic soot particles acquire sufficient sulfate coating to become efficient CCN (cloud condensation nuclei) within a time period ranging from a few hours to a few days, dependent on the ambient H2SO4 level. The results imply that internal mixing with sulfuric acid through H2SO4 vapor condensation likely represents a common aging process for a variety of atmospheric aerosols. The variations in the size and hygroscopicity of soot particles during atmospheric processing influence their optical properties, cloud-forming potential, and human health effects.
  •  
3.
  •  
4.
  • Pagels, Joakim, et al. (författare)
  • Fine-particle emissions from solid biofuel combustion studied with single-particle mass spectrometry: Identification of markers for organics, soot, and ash components
  • 2013
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996. ; 118:2, s. 859-870
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of combustion phase and fuel on smoke particle emissions from a wood stove operated with three different wood fuels and from a corn stove were investigated. A single-particle mass spectrometer (aerosol time of flight mass spectrometer (ATOFMS)) was used for time-and size-resolved chemical signatures and a scanning mobility particle sizer (SMPS) was used for online mobility size distributions. Markers of particle phase organics and elemental carbon, PM1.5, and CO emissions were strongly reduced for the corn stove compared to the wood stove. This is because the more controlled fuel and air supply in the corn stove result in more complete combustion. NOx emissions and particle phase phosphates showed the opposite trend. Marker ions and particle types associated with soot and alkali salts such as potassium chloride and potassium sulfates dominated during flaming combustion and were correlated with increased exhaust temperatures and reduced CO emissions. Marker ions of hydrocarbons and oxidized organics as well as a particle cluster type with a strong organic signature were associated with reduced combustion temperature and increased CO levels, observed during start up from cold stove, addition of fuel, and combustion with reduced air supply. Two different particle types were identified in corn experiments when particles were classified according to mobility before they were measured with the ATOFMS. "Less massive" particles contained mostly ash and soot and had vacuum aerodynamic diameters that were nearly independent of mobility diameter. "More massive" particles had aerodynamic diameters that increased linearly with mobility diameter, indicating approximately spherical shapes, and were hypothesized to consist of organics.
  •  
5.
  •  
6.
  • Pagels, Joakim, et al. (författare)
  • Processing of Soot by Controlled Sulphuric Acid and Water Condensation - Mass and Mobility Relationship
  • 2009
  • Ingår i: Aerosol Science and Technology. - : Informa UK Limited. - 1521-7388 .- 0278-6826. ; 43:7, s. 629-640
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of atmospheric processing on soot particle morphology were studied in the laboratory using the Differential Mobility Analyzer-Aerosol Particle Mass Analyzer (DMA-APM) and the DMA-DMA (Tandem DMA) techniques. To simulate atmospheric processing, combustion soot agglomerates were altered by sulphuric acid vapor condensation, relative humidity (RH) cycling, and evaporation of the sulphuric acid and water by heating. Primary investigated properties were particle mobility size and mass. Secondary properties, derived from these, include effective density, fractal dimension, dynamic shape factor, and the mass fraction of condensed material. A transformation of the soot particles to more compact forms occurs as sulphuric acid and water condense onto fresh soot. The particle mass increases and initially the mobility diameter decreases, indicating restructuring of the soot core, likely due to surface tension forces. For a given soot source and condensing liquid, the degree of compaction depends strongly on the mass (or volume) fraction of condensed material. For water and sulphuric acid condensing on combustion soot, a mass increase of 2-3 times is needed for a transformation to spherical particles. In the limit of spherical particles without voids, the effective density then approaches the inherent material density, the fractal dimension approaches 3 and the dynamic shape factor approaches 1. Our results indicate that under typical atmospheric conditions, soot particles will be fully transformed to spherical droplets on a time scale of several hours. It is expected that the morphology changes and addition of soluble material to soot strongly affect the optical and hygroscopic properties of soot.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy