SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Pagels Joakim) ;pers:(Sanati Mehri)"

form:Search_simp_t: WFRF:(Pagels Joakim) > Sanati Mehri

  • navigation:Result_t 1-10 navigation:of_t 35
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  • Bladh, Henrik, et al. (creator_code:aut_t)
  • Influence of Soot Particle Aggregation on Time-Resolved Laser-Induced Incandescence Signals
  • 2011
  • record:In_t: Applied Physics B. - : Springer Science and Business Media LLC. - 0946-2171 .- 1432-0649. ; 104:2, s. 331-341
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Laser-induced incandescence (LII) is a versatile technique for quantitative soot measurements in flames and exhausts. When used for particle sizing, the time-resolved signals are analysed as these will show a decay rate dependent on the soot particle size. Such an analysis has traditionally been based on the assumption of isolated primary particles. However, soot particles in flames and exhausts are usually aggregated, which implies loss of surface area, less heat conduction and hence errors in estimated particle sizes. In this work we present an experimental investigation aiming to quantify this effect. A soot generator, based on a propane diffusion flame, was used to produce a stable soot stream and the soot was characterised by transmission electron microscopy (TEM), a scanning mobility particle sizer (SMPS) and an aerosol particle mass analyzer coupled in series after a differential mobility analyzer (DMA-APM). Despite nearly identical primary particle size distributions for three selected operating conditions, LII measurements resulted in signal decays with significant differences in decay rate. However, the three cases were found to have quite different levels of aggregation as shown both in TEM images and mobility size distributions, and the results agree qualitatively with the expected effect of diminished heat conduction from aggregated particles resulting in longer LII signal decays. In an attempt to explain the differences quantitatively, the LII signal dependence on aggregation was modelled using a heat and mass transfer model for LII given the primary particle and aggregate size distribution data as input. Quantitative agreement was not reached and reasons for this discrepancy are discussed.
  •  
2.
  • Lillieblad, Lena, et al. (creator_code:aut_t)
  • Boiler operation influence on the emissions of submicrometer-sized particles and polycyclic aromatic hydrocarbons from biomass-fired grate boilers
  • 2004
  • record:In_t: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 18:2, s. 410-417
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The emissions of particles, and gaseous compounds, into the ambient air from biomass-fired moving grate boilers were characterized under different boiler operation conditions. The boilers had a thermal capacity of similar to1 MW. The flue gas cleaning systems consisted of multicyclones for the removal of coarse particles. Dry wood fuel that consisted of shavings, wood chips, and sawdust from a local wood industry and wood pellets were fired at two plants. The influence of boiler load on the emissions was characterized. An electrical low-pressure impactor (ELPI) was used to determine the particle number concentration with high time resolution. A low-pressure cascade impactor (LPI) was utilized for the mass size distribution and the size-differentiated chemical composition. Elemental analysis of the fly ash collected on impactor substrates was made by particle-induced X-ray emission (PIXE) analysis. The concentration of elemental carbon under different load conditions was also measured. In addition, emissions of polycyclic aromatic hydrocarbons (PAHs) from the boiler that was operating on dry wood fuel were compared with PAH emissions from two different biomass-fired boilers (one was operating on forest residues and the other on pellets). The boiler load had little influence on the particle mass concentration of submicrometer-sized particles, which was in the range of 50-75 mg/m(3) (0 degreesC, 101.3 kPa, dry gas, 13% CO2). The total particle number concentration increased and the particle size decreased as the boiler load increased. The elemental analysis revealed that potassium and sulfur were the dominating components in the submicrometer size range, whereas potassium and calcium were major components in the coarse fraction. The PAH emissions between the three boilers varied by almost 3 orders of magnitude.
  •  
3.
  •  
4.
  •  
5.
  • Lutic, Doina, et al. (creator_code:aut_t)
  • Detection of Soot Using a Resistivity Sensor Device Employing Thermophoretic Particle Deposition
  • 2010
  • record:In_t: Journal of Sensors. - : Hindawi. - 1687-725X .- 1687-7268. ; 2010:421072
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Results are reported for thermophoretic deposition of soot particles on resistivity sensors as a monitoring technique for diesel exhaust particles with the potential of improved detection limit and sensitivity. Soot with similar characteristics as from diesel exhausts was generated by a propane flame and diluted in stages. The soot in a gas flow at 240–270C∘ was collected on an interdigitated electrode structure held at a considerably lower temperature, 105–125C∘. The time delay for reaching measurable resistance values, the subsequent rate, and magnitude of resistance decrease were a function of the distance between the fingers in the electrodes and the degree of dilution of the soot containing flow. Soot deposition and subsequent removal by heating the sensor support was also performed in a real diesel exhaust. Good similarities between the behavior in our laboratory system and the real diesel exhaust were noticed.
  •  
6.
  • Malik, Azhar, et al. (creator_code:aut_t)
  • A Potential Soot Mass Determination Method from Resistivity Measurement of Thermophoretically Deposited Soot
  • 2011
  • record:In_t: AEROSOL SCIENCE AND TECHNOLOGY. - : Taylor and Francis. - 0278-6826 .- 1521-7388. ; 45:2, s. 284-294
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Miniaturized detection systems for nanometer-sized airborne particles are in demand, for example in applications for onboard diagnostics downstream particulate filters in modern diesel engines. A soot sensor based on resistivity measurements was developed and characterized. This involved generation of soot particles using a quenched co-flow diffusion flame; depositing the particles onto a sensor substrate using thermophoresis and particle detection using a finger electrode structure, patterned on thermally oxidized silicon substrate. The generated soot particles were characterized using techniques including Scanning Mobility Particle Sizer for mobility size distributions, Differential Mobility Analyzer-Aerosol Particle Mass analyzer for the mass-mobility relationship, and Transmission Electron Microscopy for morphology. The generated particles were similar to particles from diesel engines in concentration, mobility size distribution, and mass fractal dimension. The primary particle size, effective density and organic mass fraction were slightly lower than values reported for diesel engines. The response measured with the sensors was largely dependent on particle mass concentration, but increased with increasing soot aggregate mobility size. Detection down to cumulative mass as small as 20-30 mu g has been demonstrated. The detection limit can be improved by using a more sensitive resistance meter, modified deposition cell, larger flow rates of soot aerosol and modifying the sensor surface.
  •  
7.
  • Malik, Azhar, et al. (creator_code:aut_t)
  • Methodology for Sampling and Characterizing Internally Mixed Soot-Tar Particles Suspended in the Product Gas from Biomass Gasification Processes
  • 2011
  • record:In_t: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 25:4, s. 1751-1758
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • When biomass is used to produce fuels and green products by thermochemical conversion, the ability to handle or remove the fine particle phase in the product gas is crucial. The product gas from biomass gasification contains relatively volatile organic compounds (“tar”) condensed on nonvolatile cores of, for example, aggregated soot particles and char. The problems are, for example, that particles will poison catalysts used for upgrading of the gas and loss of thermal energy occurs when carbonaceous particles are being formed. The aim of the work is to design and use novel methodologies to characterize the particles in the product gas stream. A methodology has been developed to sample and characterize fine particles by a sampling probe connected to either a denuder or a packed bed device. The system was designed to avoid condensation of organic compounds when diluting the sample and decreasing the temperature. A flame soot generator connected to a condensation−evaporation unit was used to produce internally mixed model particles, i.e., particles consisting of a core of soot with an outer layer of condensed volatile compounds. A scanning mobility particle sizer (SMPS) and a differential mobility analyzer followed by an aerosol particle mass analyzer (APM) were used to characterize the particles. Because of the agglomerated structure of soot, the SMPS system was not adequate to fully characterize the mass of volatiles condensed onto the soot core, and therefore the DMA-heater-APM technique was used to determine the mass fraction of the condensed phase on the soot particles. The two different configurations were studied, and the sampling system was shown to work at a high load of organic mass. In both cases, the organic removal efficiency was >99.5%. Minor condensation of organics on the sampled soot was found for the denuder but not the packed bed. On the other hand, the particle losses were substantially higher for the packed bed compared to the denuder. The results showed that the tested sampling methodology can be used to get sufficient characterization of particles in the product gas and to evaluate the performance of biomass product gas cleaning systems at high temperature.
  •  
8.
  •  
9.
  •  
10.
  • Nilsson, Patrik, et al. (creator_code:aut_t)
  • Laboratory evaluation of a gasifier particle sampling system using model compounds of different particle morphology
  • 2011
  • record:In_t: Biomass Conversion & Biorefinery. - : Springer Science and Business Media LLC. - 2190-6815 .- 2190-6823. ; 1:2
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The objective of this work was to design and evaluate an experimental setup to be used for field studies of particle formation in biomass gasification processes. The setup includes a high-temperature dilution probe and a denuder to separate solid particles from condensable volatile material. The efficiency of the setup to remove volatile material from the sampled stream and the influence from condensation on particles with different morphologies is presented. In order to study the sampling setup model, aerosols were created with a nebulizer to produce compact and solid KCl particles and a diffusion flame burner to produce agglomerated and irregular soot particles. The nebulizer and soot generator was followed by an evaporation–condensation section where volatile material, dioctylsebacete (DOS), was added to the system as a tar model compound. The model aerosol particles were heated to 200°C to create a system containing both solid particles and volatile organic material in gas phase. The heated aerosol particles were sampled and diluted at the same temperature with the dilution probe. Downstream the probe, the DOS was adsorbed in the denuder. This was achieved by slowly decreasing the temperature of the diluted sample towards ambient level in the denuder. Thereby the supersaturation of organic vapors was reduced which decreased the probability for tar condensation and nucleation of new particles. Both the generation system and the sampling technique gave reproducible results. A DOS collection efficiency of >99% was achieved if the denuder inlet concentration was diluted to less than 1–6 mg/m3 depending on the denuder flow rate. Concentrations higher than that lead to significant impact on the resulting KCl size distribution. The choice of model compounds was done to study the effect from the particle morphology on the achieved particle characteristics after the sampling setup. When similar amounts of volatile material condensed on soot agglomerates and compact particles, a substantially smaller growth in mobility diameter was found for soot compared with compact KCl.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-10 navigation:of_t 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t