SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pagels Joakim) ;pers:(Strand Michael)"

Sökning: WFRF:(Pagels Joakim) > Strand Michael

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lillieblad, Lena, et al. (författare)
  • Boiler operation influence on the emissions of submicrometer-sized particles and polycyclic aromatic hydrocarbons from biomass-fired grate boilers
  • 2004
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 18:2, s. 410-417
  • Tidskriftsartikel (refereegranskat)abstract
    • The emissions of particles, and gaseous compounds, into the ambient air from biomass-fired moving grate boilers were characterized under different boiler operation conditions. The boilers had a thermal capacity of similar to1 MW. The flue gas cleaning systems consisted of multicyclones for the removal of coarse particles. Dry wood fuel that consisted of shavings, wood chips, and sawdust from a local wood industry and wood pellets were fired at two plants. The influence of boiler load on the emissions was characterized. An electrical low-pressure impactor (ELPI) was used to determine the particle number concentration with high time resolution. A low-pressure cascade impactor (LPI) was utilized for the mass size distribution and the size-differentiated chemical composition. Elemental analysis of the fly ash collected on impactor substrates was made by particle-induced X-ray emission (PIXE) analysis. The concentration of elemental carbon under different load conditions was also measured. In addition, emissions of polycyclic aromatic hydrocarbons (PAHs) from the boiler that was operating on dry wood fuel were compared with PAH emissions from two different biomass-fired boilers (one was operating on forest residues and the other on pellets). The boiler load had little influence on the particle mass concentration of submicrometer-sized particles, which was in the range of 50-75 mg/m(3) (0 degreesC, 101.3 kPa, dry gas, 13% CO2). The total particle number concentration increased and the particle size decreased as the boiler load increased. The elemental analysis revealed that potassium and sulfur were the dominating components in the submicrometer size range, whereas potassium and calcium were major components in the coarse fraction. The PAH emissions between the three boilers varied by almost 3 orders of magnitude.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Pagels, Joakim, et al. (författare)
  • Characteristics of aerosol particles formed during grate combustion of moist forest residue
  • 2003
  • Ingår i: Journal of Aerosol Science. - 0021-8502. ; 34:8, s. 1043-1059
  • Tidskriftsartikel (refereegranskat)abstract
    • The characteristics of aerosol particles formed during combustion of moist forest residue were studied as a function of load in a I MW moving grate boiler and at almost full load in a similar larger 6 MW boiler. The coarse (1 mum < d(ae) < 10 mum) particle number and mass concentration increased by more than one order of magnitude and the fine particle mean diameter, total volume and mass decreased when the load was increased from 50% to 75%. The combined effects led to an increase in PM10 with increasing load. The number and mass concentration and the size distribution were similar in the two boilers when operated at high load. The dominant elements (Z > 12) were K, S and Cl in the fine mode and Ca, K and S in the coarse mode. The dominant ions in the fine mode were K+, SO42- and CO32-. The fine mode particles had hygroscopic growth factors of around 1.65 at RH=90%, with a deliquescence point at a relative humidity between 30% and 60%. It was assessed that K2CO3 is responsible for the low deliquescence point. Fine mode particles of a given dry diameter had similar chemical composition. (C) 2003 Elsevier Ltd. All rights reserved.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy