SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palisaitis Justinas) ;conttype:(scientificother)"

Sökning: WFRF:(Palisaitis Justinas) > Övrigt vetenskapligt/konstnärligt

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amloy, Supaluck, et al. (författare)
  • Excitons and biexcitons in InGaN quantum dot like localization centers
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Indium segregation in a narrow InGaN single quantum well creates quantum dot (QD) like exciton localization centers. Cross section transmission electron microscopy reveals varying shapes and lateral sizes in the range ~1-5 nm of the QD-like features, while scanning near field optical microscopy demonstrates a highly inhomogeneous spatial distribution of optically active individual localization centers. Microphotoluminescence spectroscopy confirms the spectrally inhomogeneous distribution of localization centers, in which the exciton and the biexciton related emissions from single centers of varying geometry could be identified by means of excitation power dependencies. Interestingly, the biexciton binding energy (Ebxx) was found to vary from center to center, between 3 to -22 meV, in correlation with the exciton emission energy. Negative binding energies justify the three-dimensional quantum confinement, which confirms QD-like properties of the localization centers.! The observed energy correlation is proposed to be understood as variations of the lateral extension of the confinement potential, which would yield smaller values of Ebxx for reduced lateral extension and higher exciton emission energy. The proposed relation between lateral extension and Ebxx is further supported by the exciton and the biexciton recombination lifetimes of a single QD, which suggest a lateral extension of merely ~3 nm for a QD with strongly negative Ebxx = -15.5 meV.
  •  
2.
  • Hsiao, Ching-Lien, et al. (författare)
  • Composition tunable Al1-xInxN nanorod arrays grown by ultra-high-vacuum magnetron sputter epitaxy
  • 2011
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Self-assembled ternary Al1-xInxN nanorod arrays with variable In concentration, 0.10 ≤ x ≤ 0.32 have been realized onto c-plane sapphire substrates by ultra-high-vacuum magnetron sputter epitaxy with Ti0.21Zr0.79N or VN seed layers assistance. The formation of nanorods was very sensitive to the applied seed layer. Without proper seed layer assistance a continuous Al1-xInxN film was grown. The nanorods exhibit hexagonal crosssections with preferential growth along the c axis. A coaxial rod structure with higher In concentration in the core was observed by (scanning) transmission electron microscopy in combination with low-loss electron energy loss spectroscopy and energy dispersive xray spectroscopy. 5 K cathodoluminescence spectroscopy of Al0.86In0.14N nanorods revealed band edge emission at ~5.46 eV, which was accompanied by a strong defectrelated emission at ~ 3.38 eV.
  •  
3.
  • Hsiao, Ching-Lien, et al. (författare)
  • Curved-lattice epitaxial growth of chiral AlInN twisted nanorods for optical applications
  • 2012
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Despite of using chiral metamaterials to manipulate light polarization states has been demonstrated their great potential for applications such as invisible cloaks, broadband or wavelength-tunable circular polarizers, microreflectors, etc. in the past decade [1-6], operating wavelength in ultraviolet-visible range is still a challenge issue. Since these chiral structures often consist of metallic materials, their operation is designed for the infrared and microwave regions [2-4]. Here, we show how a controlled curved-lattice epitaxial growth (CLEG) of wide-bandgap AlInN semiconductor curved nanocrystals [7] can be exploited as a novel route for tailoring chiral nanostructures in the form of twisted nanorods (TNRs). The fabricated TNRs are shown to reflect light with a high degree of polarization as well as a high degree of circular polarization (that is, nearly circularly polarized light) in the ultravioletvisible region. The obtained polarization is shown to be dependent on the handedness of the TNRs.
  •  
4.
  • Hsu, Chih-Wei, et al. (författare)
  • Controlled Growth of GaN Pyramidal template hosting InGaN Quantum Dots
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The emission properties of InGaN grown on hexagonal GaN pyramids with various pitch distances (PD) are studied. Emissions associated with InGaN quantum wells (QWs) and InGaN quantum dots (QDs) can be identified. The emission energies of InGaN QWs and QDs shift toward opposite directions with increasing PD; red-shift for QWs and blue-shift for QDs. Based on the source supply mechanism in a selective area growth process, the formation of InGaN QDs on GaN pyramids is believed to be a combined effect of Stranski-Krastanow growth mode and spinodal decomposition taking place at the microscopic (0001) surfaces on GaN pyramids.
  •  
5.
  • Hsu, Chih-Wei, et al. (författare)
  • Homogeneous high In content InxGa1-x N films by supercycle atomic layer deposition
  • 2022
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 40:6
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • InxGa1-x N is a strategically important material for electronic devices given its tunable bandgap, modulated by the In/Ga ratio. However, current applications are hindered by defects caused by strain relaxation and phase separation in the material. Here, we demonstrate growth of homogeneous InxGa1-x N films with 0.3 < x < 0.8 up to similar to 30 nm using atomic layer deposition (ALD) with a supercycle approach, switching between InN and GaN deposition. The composition is uniform along and across the films, without signs of In segregation. The InxGa1-x N films show higher In-content than the value predicted by the supercycle model. A more pronounced reduction of GPC(InN) than GPC(GaN) during the growth processes of InN and GaN bilayers is concluded based on our analysis. The intermixing between InN and GaN bilayers is suggested to explain the enhanced overall In-content. Our results show the advantage of ALD to prepare high-quality InxGa1-x N films, particularly with high In-content, which is difficult to achieve with other growth methods.
  •  
6.
  • Junaid, Muhammad, et al. (författare)
  • Epitaxial Growth of GaN (0001)/Al2O3 (0001) by Reactive High Power Impulse Magnetron Sputter Deposition
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Epitaxial GaN (0001) thin films were grown on Al2O3 (0001) substrates by reactive high power impulse magnetron sputtering of liquid Ga targets in a mixed N2/Ar discharge. A combination of x-ray diffraction, electron microscopy, atomic force microscopy, μ-Raman mapping and spectroscopy, μ-photoluminescence, time of flight elastic recoil detection, and cathodoluminescence showed the formation of relaxed and strained domains in the same films. While the strained domains form due to ion bombardment during growth, the relaxed domains exhibit
  •  
7.
  • Lundskog, Anders, et al. (författare)
  • Unexpected behavior of InGaN quantum dot emission energy located at apices of hexagonal GaN pyramids
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • InGaN quantum dots (QDs) have been grown at the apices of hexagonal GaN pyramids. The pyramids were selectively grown on a (0001) oriented GaN template through circular apertures in a SiN mask positioned in square arrays. The emission of the InGaN QDs was shifted towards higher energies when the center-to-center distance of the pyramids was increased, while the emission from InGaN quantum wells located on the {1101} facets of the pyramids was energetically shifted towards lower energies. No energy shift was observed for (0001) truncated pyramids with truncation diameters larger than 100 nm.
  •  
8.
  • Palisaitis, Justinas (författare)
  • Electron Energy Loss Spectroscopy of III-Nitride Semiconductors
  • 2011
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This Licentiate Thesis covers experimental and theoretical investigations of the bulk plasmon response to different compositions and strain states of group III-nitride materials. Investigated materials were grown using magnetron sputtering epitaxy and metal organic chemical vapour deposition and studied by Rutherford backscattering spectrometry, X-ray diffraction, electron microscopy and electron energy loss spectroscopy (EELS).It is shown that low-loss EELS is a powerful method for a fast compositional determination in AlxIn1-xN system. The bulk plasmon energy of the investigated material system follows a linear relation with respect to lattice parameter and composition in unstrained layers.Furthermore, the effect of strain on the bulk plasmon peak position has been investigated by using low-loss EELS in group III-nitrides. We experimentally determine the AlN bulk plasmon peak shift of 0.156 eV per 1% volume change. The AlN peak shift was corroborated by full potential calculations (Wein2k), which reveal that the bulk plasmon peak position of III-nitrides varies near linearly with unit cell volume variations.Finally, self-assembled ternary Al1-xInxN nanorod arrays with variable In concentration have been realized onto c-plane sapphire substrates by ultra-high-vacuum magnetron sputtering epitaxy with Ti0.21Zr0.79N or VN seed layer assistance. The nanorods exhibit hexagonal cross-sections with preferential growth along the Al1-xInxN c-axis. A coaxial rod structure with higher In concentration in the core was observed by scanning transmission electron microscopy in combination with low-loss EELS.
  •  
9.
  • Palisaitis, Justinas, et al. (författare)
  • Spinodal decomposition of Al0.3In0.7N(0001) layers following in-situ thermal annealing as investigated by STEM-VEELS
  • 2012
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The thermal stability and spinodal decomposition of thin Al0.3In0.7N layers was studied in-situ by scanning transmission electron microscopy following annealing in a temperature range from 700 oC to 900 oC. The results show that for increasing layer thicknesses (from ~4 nm to ~22 nm) surface directed spinodal decomposition is initiated at Al0.3In0.7N/AlN interfaces and columnar boundaries in the Al0.3In0.7N layers. In the thin layers (~10 nm) annealing caused a single composition layer to split into doubly modulated layers with a compositional undulation perpendicular to the interfaces, while for the thicker layers (~22 nm) the spinodally decomposed structure is more random.
  •  
10.
  • Pališaitis, Justinas, 1983- (författare)
  • Valence Electron Energy Loss Spectroscopy of III-Nitride Semiconductors
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This doctorate thesis covers both experimental and theoretical investigations of the optical responses of the group III-nitrides (AlN, GaN, InN) and their ternary alloys. The goal of this research has been to explore the usefulness of valence electron energy loss spectroscopy (VEELS) for materials characterization of group III-nitride semiconductors at the nanoscale. The experiments are based on the evaluation of the bulk plasmon characteristics in the low energy loss part of the EEL spectrum since it is highly dependent on the material’s composition and strain. This method offers advantages as being fast, reliable, and sensitive. VEELS characterization results were corroborated with other experimental methods like X-ray diffraction and Rutherford backscattering spectrometry as well as full-potential calculations (Wien2k). Investigated III-nitride structures were grown using magnetron sputtering epitaxy and metal organic chemical vapor deposition techniques.Initially, it was demonstrated that EELS in the valence region is a powerful method for a fast compositional analysis of the Al1-xInxN (0≤x≤1) system. The bulk plasmon energy follows a linear relation with respect to the lattice parameter and composition in Al1-xInxN layers. Furthermore, the effect of strain on valence EELS was investigated. It was experimentally determined that the AlN bulk plasmon peak experiences a shift of 0.156 eV per 1% volume change at constant composition. The experimental results were corroborated by full-potential calculations, which showed that the bulk plasmon peak position varies nearly linearly with the unit-cell volume, at least up to 3% volume change.Employing the bulk plasmon energy loss, compositional characterization was also applied to confined structures, such as nanorods and quantum wells (QWs). Compositional profiling of spontaneously formed AlInN nanorods with varying In concentration was realized in cross-sectional and plan-view geometries. It was established that the structures exhibit a core-shell structure, where the In concentration in the core is higher than in the shell. The growth of InGaN/GaN multiple QWs with respect to composition and interface homogeneities was investigated. It was found that at certain compositions and thicknesses of QWs, where phase separation does not occur due to spinodal decomposition. Instead, QWs develop quantum dot like features inside the well as a consequence of Stranski-Krastanov-type growth mode, and delayed In incorporation into the structure.The thermal stability and degradation mechanisms of Al1-xInxN (0≤x≤1) films with different In contents, stacked in a multilayer sample, and different periodicity Al1-xInxN/AlN multilayer films, was investigated by performing a thermal annealing in combination with VEELS mapping in-situ. It was concluded that the In content in the Al1-xInxN layer determines the thermal stability and decomposition path. Finally, the phase separation by spinodal decomposition of different periodicity AlInN/AlN layers, with a starting composition inside the miscibility gap, was explored.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy