SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palisaitis Justinas) ;mspu:(doctoralthesis)"

Sökning: WFRF:(Palisaitis Justinas) > Doktorsavhandling

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pališaitis, Justinas, 1983- (författare)
  • Valence Electron Energy Loss Spectroscopy of III-Nitride Semiconductors
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This doctorate thesis covers both experimental and theoretical investigations of the optical responses of the group III-nitrides (AlN, GaN, InN) and their ternary alloys. The goal of this research has been to explore the usefulness of valence electron energy loss spectroscopy (VEELS) for materials characterization of group III-nitride semiconductors at the nanoscale. The experiments are based on the evaluation of the bulk plasmon characteristics in the low energy loss part of the EEL spectrum since it is highly dependent on the material’s composition and strain. This method offers advantages as being fast, reliable, and sensitive. VEELS characterization results were corroborated with other experimental methods like X-ray diffraction and Rutherford backscattering spectrometry as well as full-potential calculations (Wien2k). Investigated III-nitride structures were grown using magnetron sputtering epitaxy and metal organic chemical vapor deposition techniques.Initially, it was demonstrated that EELS in the valence region is a powerful method for a fast compositional analysis of the Al1-xInxN (0≤x≤1) system. The bulk plasmon energy follows a linear relation with respect to the lattice parameter and composition in Al1-xInxN layers. Furthermore, the effect of strain on valence EELS was investigated. It was experimentally determined that the AlN bulk plasmon peak experiences a shift of 0.156 eV per 1% volume change at constant composition. The experimental results were corroborated by full-potential calculations, which showed that the bulk plasmon peak position varies nearly linearly with the unit-cell volume, at least up to 3% volume change.Employing the bulk plasmon energy loss, compositional characterization was also applied to confined structures, such as nanorods and quantum wells (QWs). Compositional profiling of spontaneously formed AlInN nanorods with varying In concentration was realized in cross-sectional and plan-view geometries. It was established that the structures exhibit a core-shell structure, where the In concentration in the core is higher than in the shell. The growth of InGaN/GaN multiple QWs with respect to composition and interface homogeneities was investigated. It was found that at certain compositions and thicknesses of QWs, where phase separation does not occur due to spinodal decomposition. Instead, QWs develop quantum dot like features inside the well as a consequence of Stranski-Krastanov-type growth mode, and delayed In incorporation into the structure.The thermal stability and degradation mechanisms of Al1-xInxN (0≤x≤1) films with different In contents, stacked in a multilayer sample, and different periodicity Al1-xInxN/AlN multilayer films, was investigated by performing a thermal annealing in combination with VEELS mapping in-situ. It was concluded that the In content in the Al1-xInxN layer determines the thermal stability and decomposition path. Finally, the phase separation by spinodal decomposition of different periodicity AlInN/AlN layers, with a starting composition inside the miscibility gap, was explored.
  •  
2.
  • Persson, Ingemar, 1985- (författare)
  • Surface characterization of 2D transition metal carbides (MXenes)
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Research on two-dimensional (2D) materials is a rapidly growing field owing to the wide range of new interesting properties found in 2D structures that are vastly different from their three-dimensional (3D) analogues. In addition, 2D materials embodies a significant surface area that facilitates a high degree of surface reactions per unit volume or mass, that is imperative in many applications such as catalysis, energy storage, energy conversion, filtration, and single molecule sensing. MXenes constitute a family of 2D materials consisting of transition metal carbides and/or nitrides, which are typically formed after selective etching of their 3D parent MAX phases. The latter, are a family of nanolaminated compounds that typically follow the formula Mn+1AXn (n=1-3), where M is a transition metal, A is a group 13 or 14 element, and X is C and or N. Selective etching by aqueous F- containing acids removes the A layer leaving 2D Mn+1Xn slabs instantly terminated by a mix of O-, OH- and F-groups. The first and most investigated MXene is Ti3C2TX, where TX stands for surface termination, which has shown record properties in a range of applications (eg. electrode in Li-batteries, supercapacitors, sieving membrane, electromagnetic interference shielding, and carbon capture). Adding to that, over 30 different MXenes have been discovered since 2011, exhibiting alternative or superior properties. Most importantly, elegant routes for property design in the MXene family has been demonstrated, by means of either varying the chemistry in the Mn+1Xn compound, by alloying two M elements, or by changing the structure of the MXene by introducing vacancies.The present work has a led to an additional route for post synthesis property tuning in MXenes by manipulation of surface termination elements. This enables a unique toolbox for property tuning which is not available to other 2D materials and is highly beneficial for applications that is dependent on surface reactions. Furthermore, chemical and structural characterization of terminations on single sheets is essential to rule out the influence of intercalants or contamination that is typically present in multilayer MXene samples or thin films. For that purpose, a method for preparing isolated contamination free single sheets of MXene samples for transmission electron microscopy (TEM) characterization was established. In order to determine vacancy and termination sites, atomically resolved scanning (S)TEM imaging and image simulations was carried out. Two main processes were employed to substitute the termination elements.1) An initial thermal treatment in vacuum facilitates F desorption and it was shown that O-terminations rearranges on the evacuated sites. H2 gas exposure in a controlled environment demonstrated a removal of the remaining O-terminations. As a result, termination-free MXene is possible to realize under vacuum conditions.2) CO2 was introduced as a first non-inherent termination on MXene by in situ CO2 gas exposure at low temperatures. That was a first demonstration of Ti3C2TX as promising material for carbon capture. Additionally, O-saturated surfaces were demonstrated after introduction of O2 gas on the F-depleted Ti3C2TX MXene, which is highly relevant for hydrogen evolution reactions where fully O-terminated Ti3C2TX are predicted to improve efficiency.A Lewis acid melt synthesis method was used to realize the first MXene exclusively terminated with Cl. Moreover, this was the first report of a MXene directly synthesised with terminations other than O, OH, and F.Furthermore, we have expanded the space of property tuning by introduction of chemical ordering, by selective etching of Y in an alloyed (Mo2/3Y1/3)2CTX MXene. This either produced chemical ordering with one M (Mo) element and vacancies, or ordering between two M (Mo and Y) elements. This was further reported to significantly increase volumetric capacitance because of the increased number of active sites around vacancies, leading to an increasing charge density. As a final note, the stability of Nb2CTX MXene under ambient conditions was investigated. It was found that the surface Nb adatoms, present after etching, got oxidized over time which resulted in local clustering and effectively degraded the MXene.This work has demonstrated reproducible surface characterization methods for determining termination elements and sites in 2D MXenes, that is ultimately governing MXene properties. Most importantly, we report on a new approach for MXene property tuning as well as contributing to several existing property tuning approaches. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy