SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palisaitis Justinas) ;pers:(Dahlqvist Martin)"

Sökning: WFRF:(Palisaitis Justinas) > Dahlqvist Martin

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahlqvist, Martin, et al. (författare)
  • Out-Of-Plane Ordered Laminate Borides and Their 2D Ti-Based Derivative from Chemical Exfoliation
  • 2021
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 33:38
  • Tidskriftsartikel (refereegranskat)abstract
    • Exploratory theoretical predictions in uncharted structural and compositional space are integral to materials discoveries. Inspired by M5SiB2 (T2) phases, the finding of a family of laminated quaternary metal borides, M M-4 SiB2, with out-of-plane chemical order is reported here. 11 chemically ordered phases as well as 40 solid solutions, introducing four elements previously not observed in these borides are predicted. The predictions are experimentally verified for Ti4MoSiB2, establishing Ti as part of the T2 boride compositional space. Chemical exfoliation of Ti4MoSiB2 and select removal of Si and MoB2 sub-layers is validated by derivation of a 2D material, TiOxCly, of high yield and in the form of delaminated sheets. These sheets have an experimentally determined direct band gap of approximate to 4.1 eV, and display characteristics suitable for supercapacitor applications. The results take the concept of chemical exfoliation beyond currently available 2D materials, and expands the envelope of 3D and 2D candidates, and their applications.
  •  
2.
  • Dahlqvist, Martin, et al. (författare)
  • Theoretical Prediction and Synthesis of a Family of Atomic Laminate Metal Borides with In-Plane Chemical Ordering
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 142:43, s. 18583-18591
  • Tidskriftsartikel (refereegranskat)abstract
    • All atomically laminated MAB phases (M = transition metal, A = A-group element, and B = boron) exhibit orthorhombic or tetragonal symmetry, with the only exception being hexagonal Ti2InB2. Inspired by the recent discovery of chemically ordered hexagonal carbides, i-MAX phases, we perform an extensive first-principles study to explore chemical ordering upon metal alloying of M2AlB2 (M from groups 3 to 9) in orthorhombic and hexagonal symmetry. Fifteen stable novel phases with in-plane chemical ordering are identified, coined i-MAB, along with 16 disordered stable alloys. The predictions are verified through the powder synthesis of Mo4/3Y2/3 AlB2 and Mo4/3Sc2/3AlB2 of space group R (3) over barm (no. 166), displaying the characteristic in-plane chemical order of Mo and Y/Sc and Kagome ordering of the Al atoms, as evident from X-ray diffraction and electron microscopy. The discovery of i-MAB phases expands the elemental space of these borides with M = Sc, Y, Zr, Hf, and Nb, realizing an increased property tuning potential of these phases as well as their suggested potential twodimensional derivatives.
  •  
3.
  • Fashandi, Hossein, et al. (författare)
  • Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC
  • 2017
  • Ingår i: Nature Materials. - : NATURE PUBLISHING GROUP. - 1476-1122 .- 1476-4660. ; 16:8, s. 814-818
  • Tidskriftsartikel (refereegranskat)abstract
    • The large class of layered ceramics encompasses both van der Waals (vdW) and non-vdW solids. While intercalation of noble metals in vdW solids is known, formation of compounds by incorporation of noble-metal layers in non-vdW layered solids is largely unexplored. Here, we show formation of Ti3AuC2 and Ti3Au2C2 phases with up to 31% lattice swelling by a substitutional solid-state reaction of Au into Ti3SiC2 single-crystal thin films with simultaneous out-diffusion of Si. Ti3IrC2 is subsequently produced by a substitution reaction of Ir for Au in Ti3Au2C2. These phases form Ohmic electrical contacts to SiC and remain stable after 1,000 h of ageing at 600 degrees C in air. The present results, by combined analytical electron microscopy and ab initio calculations, open avenues for processing of noble-metal-containing layered ceramics that have not been synthesized from elemental sources, along with tunable properties such as stable electrical contacts for high-temperature power electronics or gas sensors.
  •  
4.
  • Halim, Joseph, et al. (författare)
  • Experimental and Theoretical Investigations of Out-of-Plane Ordered Nanolaminate Transition Metal Borides: M4CrSiB2 (M = Mo, W, Nb)
  • 2023
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 62:14, s. 5341-5347
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the synthesis of three out-of-plane chemically ordered quaternary transition metal borides (o-MAB phases) of the chemical formula M4CrSiB2 (M = Mo, W, Nb). The addition of these phases to the recently discovered o-MAB phase Ti4MoSiB2 shows that this is indeed a new family of chemically ordered atomic laminates. Furthermore, our results expand the attainable chemistry of the traditional M5SiB2 MAB phases to also include Cr. The crystal structure and chemical ordering of the produced materials were investigated using high-resolution scanning transmission electron microscopy and X-ray diffraction by applying Rietveld refinement. Additionally, calculations based on density functional theory were performed to investigate the Cr preference for occupying the minority 4c Wyckoff site, thereby inducing chemical order.
  •  
5.
  • Meshkian, Rahele, et al. (författare)
  • Theoretical Analysis, Synthesis, and Characterization of 2D W1.33C (MXene) with Ordered Vacancies
  • 2019
  • Ingår i: ACS APPLIED NANO MATERIALS. - : AMER CHEMICAL SOC. - 2574-0970. ; 2:10, s. 6209-6219
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis of delaminated 2D W1.33C (MXene) has been performed by selectively etching Al as well as Sc/Y from the recently discovered nanolaminated i-MAX phases (W2/3Sc1/3)(2)AlC and (W2/3Y1/3)(2)AlC. Both quaternary phases produce MXenes with similar flake morphology and with a skeletal structure due to formation of ordered vacancies. The measured O, OH, and F terminations, however, differ in amount as well as in relative ratios, depending on parent material, evident from X-ray photoelectron spectroscopy. These findings are correlated to theoretical simulations based on first-principles, investigating the W1.33C, and the effect of termination configurations on structure, formation energy, stability, and electronic structure. The theoretical results indicate a favored F-rich surface composition, though with a system going from insulating/semiconducting to metallic for different termination configurations, suggesting a high tuning potential of these materials. Additionally, free-standing W1.33C films of 2-4 mu m thickness and with up to 10 wt % polymer (PEDOT:PSS) were tested as electrodes in supercapacitors, showing capacitances up to 600 F cm(-3) in 1 M H2SO4 and high capacitance retention for at least 10000 cycles at 10 A g(-1). This is highly promising results compared to other W-based materials to date.
  •  
6.
  • Meshkian, Rahele, et al. (författare)
  • W-Based Atomic Laminates and Their 2D Derivative W1.33C MXene with Vacancy Ordering
  • 2018
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 30:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural design on the atomic level can provide novel chemistries of hybrid MAX phases and their MXenes. Herein, density functional theory is used to predict phase stability of quaternary i-MAX phases with in-plane chemical order and a general chemistry (W 2/3 M 2 1/3 ) 2 AC, where M 2 = Sc, Y (W), and A = Al, Si, Ga, Ge, In, and Sn. Of over 18 compositions probed, only two—with a monoclinic C2/c structure—are predicted to be stable: (W 2/3 Sc 1/3 ) 2 AlC and (W 2/3 Y 1/3 ) 2 AlC and indeed found to exist. Selectively etching the Al and Sc/Y atoms from these 3D laminates results in W 1.33 C-based MXene sheets with ordered metal divacancies. Using electrochemical experiments, this MXene is shown to be a new, promising catalyst for the hydrogen evolution reaction. The addition of yet one more element, W, to the stable of M elements known to form MAX phases, and the synthesis of a pure W-based MXene establishes that the etching of i-MAX phases is a fruitful path for creating new MXene chemistries that has hitherto been not possible, a fact that perforce increases the potential of tuning MXene properties for myriad applications.
  •  
7.
  • Palisaitis, Justinas, et al. (författare)
  • On the nature of planar defects in transition metal diboride line compounds
  • 2022
  • Ingår i: Materialia. - : Elsevier Science Ltd. - 2589-1529. ; 24
  • Tidskriftsartikel (refereegranskat)abstract
    • Planar defect structures appearing in transition metal diboride (TMB2) thin films, grown by different magnetron sputtering-deposition approaches over a wide compositional and elemental range, were systematically investi-gated. Atomically resolved scanning transmission electron microscopy (STEM) imaging, electron energy loss spec-troscopy (EELS) elemental mapping, and first principles calculations have been applied to elucidate the atomic structures of the observed defects. Two distinct types of antiphase boundary (APB) defects reside on the {1(1) over bar 00} planes. These defects are without (named APB-1) or with (APB-2) local deviation from stoichiometry. APB-2 de-fects, in turn, appear in different variants. It is found that APB-2 defects are governed by the films composition, while APB-1 defects are endemic. The characteristic structures, interconnections, and circumstances leading to the formation of these APB-defects, together with their formation energies, are presented.
  •  
8.
  • Palisaitis, Justinas, et al. (författare)
  • Where is the unpaired transition metal in substoichiometric diboride line compounds?
  • 2021
  • Ingår i: Acta Materialia. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1359-6454 .- 1873-2453. ; 204
  • Tidskriftsartikel (refereegranskat)abstract
    • The atomic structure and local composition of high quality epitaxial substoichiometric titanium diboride (TiB1.9) thin film, deposited by unbalanced magnetron sputtering, were studied using analytical high-resolution scanning transmission electron microscopy, density functional theory, and image simulations. The unpaired Ti is pinpointed to inclusion of Ti-based stacking faults within a few atomic layers, which terminates the {1 (1) over bar 00} prismatic planes of the crystal structure and attributed to the absence of B between Ti planes that locally relaxes the structure. This mechanism allows the line compound to accommodate off-stoichiometry and remain a line compound between defects. The planar defects are embedded in otherwise stoichiometric TiB2 and are delineated by insertion of dislocations. An accompanied decrease in Ti-Ti bond lengths along and across the faults is observed. (c) 2020ActaMaterialiaInc. PublishedbyElsevierLtd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
  •  
9.
  • Tao, Quanzheng, et al. (författare)
  • Synthesis, Characterization, and Modeling of a Chemically Ordered Quaternary Boride, Mo4MnSiB2
  • 2023
  • Ingår i: Crystal Growth & Design. - : AMER CHEMICAL SOC. - 1528-7483 .- 1528-7505. ; 23:5, s. 3258-3263
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent discovery of chemical ordering in quaternary borides offers new ways of exploring properties and functionalities of these laminated phases. Here, we have synthesized and investigated chemical ordering of the laminated Mo4MnSiB2 (T2) phase, thereby introducing a magnetic element into the family of materials coined o-MAB phases. By X-ray diffraction and scanning transmission electron microscopy, we provide evidence for out-of-plane chemical ordering of Mo and Mn, with Mo occupying the 16l site and Mn preferentially residing in the 4c site. Mn and B constitute quasi-two-dimensional layers in the laminated material. We have therefore also studied the magnetic properties by magnetometry, and no sign of long-range magnetic order is observed. An initial assessment of the magnetic ordering has been further studied by density functional theory (DFT) calculations, and while we find an antiferromagnetic configuration to be the most stable one, ferromagnetic ordering is very close in energy.
  •  
10.
  • Tao, Quanzheng, et al. (författare)
  • Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The exploration of two-dimensional solids is an active area of materials discovery. Research in this area has given us structures spanning graphene to dichalcogenides, and more recently 2D transition metal carbides (MXenes). One of the challenges now is to master ordering within the atomic sheets. Herein, we present a top-down, high-yield, facile route for the controlled introduction of ordered divacancies in MXenes. By designing a parent 3D atomic laminate, (Mo2/3Sc1/3)(2)AlC, with in-plane chemical ordering, and by selectively etching the Al and Sc atoms, we show evidence for 2D Mo1.33C sheets with ordered metal divacancies and high electrical conductivities. At similar to 1,100 F cm(-3), this 2D material exhibits a 65% higher volumetric capacitance than its counterpart, Mo2C, with no vacancies, and one of the highest volumetric capacitance values ever reported, to the best of our knowledge. This structural design on the atomic scale may alter and expand the concept of property-tailoring of 2D materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy