SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Palisaitis Justinas) ;pers:(Jansson Ulf)"

Sökning: WFRF:(Palisaitis Justinas) > Jansson Ulf

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Folkenant, Matilda, et al. (författare)
  • Structure and properties of Cr–C/Ag films deposited by magnetron sputtering
  • 2015
  • Ingår i: Surface & Coatings Technology. - : Elsevier. - 0257-8972 .- 1879-3347. ; 281, s. 184-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Cr–C/Ag thin films with 0–14 at.% Ag have been deposited by magnetron sputtering from elemental targets. The samples were analyzed by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to study their structure and chemical bonding. A complex nanocomposite structure consisting of three phases; nanocrystalline Ag, amorphous CrCx and amorphous carbon is reported. The carbon content in the amorphous carbide phase was determined to be 32–33 at.% C, independent of Ag content. Furthermore, SEM and XPS results showed higher amounts of Ag on the surface compared to the bulk. The hardness and Young's modulus were reduced from 12 to 8 GPa and from 270 to 170 GPa, respectively, with increasing Ag content. The contact resistance was found to decrease with Ag addition, with the most Ag rich sample approaching the values of an Ag reference sample. Initial tribological tests gave friction coefficients in the range of 0.3 to 0.5, with no clear trends. Annealing tests show that the material is stable after annealing at 500 °C for 1 h, but not after annealing at 800 °C for 1 h. In combination, these results suggest that sputtered Cr–C/Ag films could be potentially applicable for electric contact applications.
  •  
2.
  • Malinovskis, Paulius, et al. (författare)
  • Synthesis and characterisation of Mo-B-C thin films deposited by non-reactive DC magnetron sputtering
  • 2017
  • Ingår i: Surface & Coatings Technology. - : ELSEVIER SCIENCE SA. - 0257-8972 .- 1879-3347. ; 309, s. 506-515
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin films in the Mo-B-C system with varying carbon content (up to 37 at.%) were deposited using non-reactive DC magnetron sputtering. The phase composition and microstructure were determined and the potential use of the films in sliding electrical contact applications was evaluated. Films with lower than 23 at.% carbon content consisted of nanocrystalline MoB2 - x grains surrounded by an amorphous tissue phase (a-B for binary, and a-BCx for ternary films). With increasing carbon content grain sizes was found to decrease (from 16 to 5 nm), and above 23 at.% carbon the films deposited at room temperature were X-ray amorphous. Scanning transmission electron microscopy and energy dispersive X-ray spectroscopy reveal that these films contain Mo-rich and Mo-poor regions, and thus are two-phase amorphous nanocomposites. Low-carbon content samples exhibited a friction coefficient against the steel counter surface of 1.1; this was reduced to 0.8 for high carbon-content films. Analysis of the tribofilm revealed formation of molybdenum oxide and amorphous carbon, however without significant lubricating effect at room temperature. Hardness and elastic modulus decrease with carbon content from similar to 29 to similar to 22 GPa and similar to 526 to similar to 326 GPa. These values give an WE ratio of 0.06 to 0.07, indicating brittle material. Resistivity was found to increase with carbon content from similar to 175 mu Omega cm for binary Mo-B to similar to 395 mu Omega cm for Mo-B-C thin film with 37 at.% of C. Therefore all the above results suggest that the Mo-B-C films are not suitable for sliding electrical contacts.
  •  
3.
  • Malinovskis, Paulius, et al. (författare)
  • Synthesis and Characterisation of Nanocomposite Mo-Fe-B Thin Films Deposited by Magnetron Sputtering
  • 2021
  • Ingår i: Materials. - : MDPI. - 1996-1944 .- 1996-1944. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Several ternary phases are known in the Mo-Fe-B system. Previous ab initio calculations have predicted that they should exhibit a tempting mix of mechanical and magnetic properties. In this study, we have deposited Mo-Fe-B films with a Fe-content varying from 0-37 at.% using non-reactive DC (direct current) magnetron sputtering. The phase composition, microstructure, and mechanical properties were investigated using X-ray diffraction, scanning transmission electron microscopy, and nanoindentation measurements. Films deposited at 300 degrees C and with >7 at.% Fe are nanocomposites consisting of two amorphous phases: a metal-rich phase and a metal-deficient phase. Hardness and elastic modulus were reduced with increasing Fe-content from similar to 29 to similar to 19 GPa and similar to 526 to similar to 353 GPa, respectively. These values result in H-3/E-2 ratios of 0.089-0.052 GPa, thereby indicating brittle behaviour of the films. Also, no indication of crystalline ternary phases was observed at temperatures up to 600 degrees C, suggesting that higher temperatures are required for such films to form.
  •  
4.
  • Malinovskis, Paulius, et al. (författare)
  • Synthesis and characterization of MoB2-x thin films grown by nonreactive DC magnetron sputtering
  • 2016
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 34, s. 031511-1-031511-8
  • Tidskriftsartikel (refereegranskat)abstract
    • DC magnetron sputtering was used to depositmolybdenumboridethin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB2−x (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB2structure (AlB2-type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB2 phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissue phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.
  •  
5.
  • Mockuté, Aurelija, et al. (författare)
  • Synthesis and characterization of (Ti1-xAlx)B2+Delta thin films from combinatorial magnetron sputtering
  • 2019
  • Ingår i: Thin Solid Films. - : ELSEVIER SCIENCE SA. - 0040-6090 .- 1879-2731. ; 669, s. 181-187
  • Tidskriftsartikel (refereegranskat)abstract
    • (Ti1-xAlx)B2+Delta films with a lateral composition gradient of x = [0.30-0.66] and Delta = [0.07-1.22] were deposited on an Al2O3 wafer by dual magnetron sputtering at 400 degrees C from sintered TiB2 and AlB2 targets. Composition analysis indicates that higher Ti:Al ratios favor overstoichiometry in B and a reduced incorporation of O. Transmission electron microscopy reveals distinctly different microstructures of Ti- and Al-rich compositions, with formation of characteristic conical growth features for the latter along with a lower degree of crystallinity and significantly less tissue phase from B segregation at the grain boundaries. For Al-rich films, phase separation into Ti- and Al-rich diboride nanometer-size domains is observed and interpreted as surface-initiated spinodal decomposition. The hardness of the films ranges from 14 to 28 GPa, where the higher values were obtained for the Ti-rich regions of the metal boride.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy