SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Panksep Kristel) "

Sökning: WFRF:(Panksep Kristel)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Donis, Daphne, et al. (författare)
  • Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:12, s. 4314-4333
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.
  •  
2.
  • Kisand, Veljo, et al. (författare)
  • Prediction of COVID-19 positive cases, a nation-wide SARS-CoV-2 wastewater-based epidemiology study
  • 2023
  • Ingår i: Water Research. - : Elsevier BV. - 1879-2448 .- 0043-1354. ; 231
  • Tidskriftsartikel (refereegranskat)abstract
    • Taking advantage of Estonia's small size and population, we have employed wastewater-based epidemiology approach to monitor the spread of SARS-CoV-2, releasing weekly nation-wide updates. In this study we report results obtained between August 2020 and December 2021. Weekly 24 h composite samples were collected from wastewater treatment plants of larger towns already covered 65% of the total population that was complemented up to 40 additional grab samples from smaller towns/villages and the specific sites of concern. The N3 gene abundance was quantified by RT-qPCR. The N3 gene copy number (concentration) in wastewater fluctuated in accordance with the SARS-CoV-2 spread within the total population, with N3 abundance starting to increase 1.25 weeks (9 days) (95% CI: [1.10, 1.41]) before a rise in COVID-19 positive cases. Statistical model between the load of virus in wastewater and number of infected people validated with the Alpha variant wave (B.1.1.17) could be used to predict the order of magnitude in incidence numbers in Delta wave (B.1.617.2) in fall 2021. Targeted testing of student dormitories, retirement and nursing homes and prisons resulted in successful early discovery of outbreaks. We put forward a SARS-CoV-2 Wastewater Index (SARS2-WI) indicator of normalized virus load as COVID-19 infection metric to complement the other metrics currently used in disease control and prevention: dynamics of effective reproduction number (Re), 7-day mean of new cases, and a sum of new cases within last 14 days. In conclusion, an efficient surveillance system that combines analysis of composite and grab samples was established in Estonia. There is considerable discussion how the viral load in wastewater correlates with the number of infected people. Here we show that this correlation can be found. Moreover, we confirm that an increased signal in wastewater is observed before the increase in the number of infections. The surveillance system helped to inform public health policy and place direct interventions during the COVID-19 pandemic in Estonia via early warning of epidemic spread in various regions of the country.
  •  
3.
  • Mantzouki, Evanthia, et al. (författare)
  • Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins
  • 2018
  • Ingår i: Toxins. - : MDPI. - 2072-6651 .- 2072-6651. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
  •  
4.
  • Mikryukov, Vladimir, et al. (författare)
  • Connecting the multiple dimensions of global soil fungal diversity
  • 2023
  • Ingår i: Science advances. - 2375-2548. ; 9:48
  • Tidskriftsartikel (refereegranskat)abstract
    • How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
  •  
5.
  • Tedersoo, Leho, et al. (författare)
  • Global patterns in endemicity and vulnerability of soil fungi.
  • 2022
  • Ingår i: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:22, s. 6696-6710
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy