SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Panopoulou Georgia) "

Search: WFRF:(Panopoulou Georgia)

  • Result 1-10 of 40
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • al., et, et al. (author)
  • Polarized blazar X-rays imply particle acceleration in shocks
  • 2022
  • In: Nature. - 0028-0836 .- 1476-4687. ; 611:7937
  • Journal article (peer-reviewed)abstract
    • Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1-3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock.
  •  
2.
  • Andersson, B. -G., et al. (author)
  • Ultraviolet spectropolarimetry with polstar: interstellar medium science
  • 2022
  • In: Astrophysics and Space Science. - : Springer Science and Business Media LLC. - 1572-946X .- 0004-640X. ; 367
  • Journal article (peer-reviewed)abstract
    • Continuum polarization over the UV-to-microwave range is due to dichroic extinction (or emission) by asymmetric, aligned dust grains. Scattering can also be an important source of polarization, especially at short wavelengths. Because of both grain alignment and scattering physics, the wavelength dependence of the polarization, generally, traces the size of the aligned grains. Similarly because of the differing wavelength dependencies of dichroic extinction and scattering polarization, the two can generally be reliably separated. Ultraviolet (UV) polarimetry therefore provides a unique probe of the smallest dust grains (diameter<0.09 μm), their mineralogy and interaction with the environment. However, the current observational status of interstellar UV polarization is very poor with less than 30 lines of sight probed. With the modern, quantitative and well-tested, theory of interstellar grain alignment now available, we have the opportunity to advance the understanding of the interstellar medium (ISM) by executing a systematic study of the UV polarization in the ISM of the Milky Way and near-by galaxies. The Polstar mission will provide the sensitivity and observing time needed to carry out such a program (probing hundreds of stars in the Milky Way and dozens of stars in the LMC/SMC), addressing questions of dust composition as a function of size and location, radiation- and magnetic-field characteristics as well as unveiling the carrier of the 2175 Å extinction feature. In addition, using high-resolution UV line spectroscopy Polstar will search for and probe the alignment of, and polarization from, aligned atoms and ions - so called "Ground State Alignment", a potentially powerful new probe of magnetic fields in the diffuse ISM.
  •  
3.
  • Blinov, Dmitriy, et al. (author)
  • RoboPol: AGN polarimetric monitoring data
  • 2021
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:3, s. 3715-3726
  • Journal article (peer-reviewed)abstract
    • We present uniformly reprocessed and re-calibrated data from the RoboPol programme of optopolarimetric monitoring of active galactic nuclei (AGNs), covering observations between 2013, when the instrument was commissioned, and 2017. In total, the data set presented in this paper includes 5068 observations of 222 AGN with Dec. > -25○. We describe the current version of the RoboPol pipeline that was used to process and calibrate the entire data set, and we make the data publicly available for use by the astronomical community. Average quantities summarizing optopolarimetric behaviour (average degree of polarization, polarization variability index) are also provided for each source we have observed and for the time interval we have followed it.
  •  
4.
  • Blinov, Dmitriy, et al. (author)
  • RoboPol: connection between optical polarization plane rotations and gamma-ray flares in blazars
  • 2018
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 474:1, s. 1296-1306
  • Journal article (peer-reviewed)abstract
    • We use results of our 3 yr polarimetric monitoring programme to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by RoboPol is analysed together with the gamma-ray data provided by Fermi-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time-scales of rotations and flares are marginally correlated.
  •  
5.
  • Blinov, Dmitriy, et al. (author)
  • RoboPol: do optical polarization rotations occur in all blazars?
  • 2016
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462:2, s. 1175-1785
  • Journal article (peer-reviewed)abstract
    • We present a new set of optical polarization plane rotations in blazars, observed during the third year of operation of RoboPol. The entire set of rotation events discovered during three years of observations is analysed with the aim of determining whether these events are inherent in all blazars. It is found that the frequency of the polarization plane rotations varies widely among blazars. This variation cannot be explained either by a difference in the relativistic boosting or by selection effects caused by a difference in the average fractional polarization. We conclude that the rotations are characteristic of a subset of blazars and that they occur as a consequence of their intrinsic properties.
  •  
6.
  • Blinov, Dmitriy, et al. (author)
  • RoboPol: first season rotations of optical polarization plane in blazars
  • 2015
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 453:2, s. 1669-1683
  • Journal article (peer-reviewed)abstract
    • We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma-rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periods have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5 × 10-2) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (∼5 × 10-5) that none of our rotations is physically connected with an increase in gamma-ray activity.
  •  
7.
  • Blinov, Dmitriy, et al. (author)
  • RoboPol: optical polarization-plane rotations and flaring activity in blazars
  • 2016
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 457:2, s. 2252-2262
  • Journal article (peer-reviewed)abstract
    • We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.
  •  
8.
  • Blinov, D., et al. (author)
  • The RoboPol sample of optical polarimetric standards
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Journal article (peer-reviewed)abstract
    • Context. Optical polarimeters are typically calibrated using measurements of stars with known and stable polarization parameters. However, there is a lack of such stars available across the sky. Many of the currently available standards are not suitable for medium and large telescopes due to their high brightness. Moreover, as we find, some of the polarimetric standards used are in fact variable or have polarization parameters that differ from their cataloged values. Aims. Our goal is to establish a sample of stable standards suitable for calibrating linear optical polarimeters with an accuracy down to 10-3 in fractional polarization. Methods. For 4 yr, we have been running a monitoring campaign of a sample of standard candidates comprised of 107 stars distributed across the northern sky. We analyzed the variability of the linear polarization of these stars, taking into account the non-Gaussian nature of fractional polarization measurements. For a subsample of nine stars, we also performed multiband polarization measurements. Results. We created a new catalog of 65 stars (see Table 2) that are stable, have small uncertainties of measured polarimetric parameters, and can be used as calibrators of polarimeters at medium and large telescopes.
  •  
9.
  • Burris, William A., et al. (author)
  • IRAS 00450+7401 and the Mid-infrared Fade/Burst Cycle of R Coronae Borealis-type Stars
  • 2023
  • In: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 166:2
  • Journal article (peer-reviewed)abstract
    • We present optical and infrared imaging and spectroscopy of the R Coronae Borealis-type (R Cor Bor) star IRAS 00450+7401. Optical spectra further confirm its classification as a cool R Cor Bor system, having a hydrogen-deficient carbon star spectral subclass of HdC5 or later. Mid-infrared spectroscopy reveals the typical ∼8 μm “hump” seen in other R Cor Bor stars and no other features. A modern-epoch spectral energy distribution shows bright emission from hot dust having T dust > 600 K. Historical infrared data reveal generally cooler dust color temperatures combined with long-term fading trends, but provide no discernible correlation between flux level and temperature. Investigating the most mid-infrared variable R Cor Bor stars found in IRAS, AKARI, and WISE data reveals similar fading trends, bursts that can show a factor of up to 10 change in flux density between epochs, and blackbody-fit dust color temperatures that span 400-1300 K. While some R Cor Bor stars such as IRAS 00450+7401 appear to undergo fade/burst cycles in the mid-infrared, significant gaps in temporal coverage prevent conclusively identifying any preferred timescale for their mid-infrared variability and circumstellar dust temperature changes.
  •  
10.
  • Hacar, A., et al. (author)
  • Initial Conditions for Star Formation: a Physical Description of the Filamentary ISM
  • 2023
  • In: ASP Conference Series. ; 534, s. 153-
  • Conference paper (peer-reviewed)abstract
    • The interstellar medium (ISM) contains filamentary structure over a wide range of scales. Understanding the role of this structure, both as a conduit of gas across the scales and a diagnostic tool of local physics, is a major focus of star formation studies. We review recent progress in studying filamentary structure in the ISM, interpreting its properties in terms of physical processes, and exploring formation and evolution scenarios. We include structures from galactic-scale filaments to tenth-of-a-parsec scale filaments, comprising both molecular and atomic structures, from both observational and theoretical perspectives. In addition to the literature overview, we assemble a large amount of catalog data from different surveys and provide the most comprehensive census of filamentary structures to date. Our census consists of 22 803 filamentary structures, facilitating a holistic perspective and new insights. We use our census to conduct a meta-analysis, leading to a description of filament properties over four orders of magnitudes in length and eight in mass. Our analysis emphasize the hierarchical and dynamical nature of filamentary structures. Filaments do not live in isolation, nor they generally resemble static structures close to equilibrium. We propose that accretion during filament formation and evolution sets some of the key scaling properties of filaments. This highlights the role of accretion during filament formation and evolution and also in setting the initial conditions for star formation. Overall, the study of filamentary structures during the past decade has been observationally driven. While great progress has been made on measuring the basic properties of filaments, our understanding of their formation and evolution is clearly lacking. In this context, we identify a number of directions and questions we consider most pressing for the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view