SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Papenberg Goran) ;pers:(Salami Alireza)"

Sökning: WFRF:(Papenberg Goran) > Salami Alireza

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustavsson, Jonatan, et al. (författare)
  • The iron-dopamine D1 coupling modulates neural signatures of working memory across adult lifespan
  • 2023
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain iron overload and decreased integrity of the dopaminergic system have been independently reported as brain substrates of cognitive decline in aging. Dopamine (DA), and iron are co-localized in high concentrations in the striatum and prefrontal cortex (PFC), but follow opposing age-related trajectories across the lifespan. DA contributes to cellular iron homeostasis and the activation of D1-like DA receptors (D1DR) alleviates oxidative stress-induced inflammatory responses, suggesting a mutual interaction between these two fundamental components. Still, a direct in-vivo study testing the iron-D1DR relationship and their interactions on brain function and cognition across the lifespan is rare. Using PET and MRI data from the DyNAMiC study (n=180, age=20-79, %50 female), we showed that elevated iron content was related to lower D1DRs in DLPFC, but not in striatum, suggesting that dopamine-rich regions are less susceptible to elevated iron. Critically, older individuals with elevated iron and lower D1DR exhibited less frontoparietal activations during the most demanding task, which in turn was related to poorer working-memory performance. Together, our findings suggest that the combination of elevated iron load and reduced D1DR contribute to disturbed PFC-related circuits in older age, and thus may be targeted as two modifiable factors for future intervention.
  •  
2.
  • Johansson, Jarkko, et al. (författare)
  • Biphasic patterns of age-related differences in dopamine D1 receptors across the adult lifespan
  • 2023
  • Ingår i: Cell Reports. - 2211-1247. ; 42:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related alterations in D1-like dopamine receptor (D1DR) have distinct implications for human cognition and behavior during development and aging, but the timing of these periods remains undefined. Enabled by a large sample of in vivo assessments (n = 180, age 20 to 80 years of age, 50% female), we discover that age-related D1DR differences pivot at approximately 40 years of age in several brain regions. Focusing on the most age-sensitive dopamine-rich region, we observe opposing pre- and post-forties interrelations among caudate D1DR, cortico-striatal functional connectivity, and memory. Finally, particularly caudate D1DR differences in midlife and beyond, but not in early adulthood, associate with manifestation of white matter lesions. The present results support a model by which excessive dopamine modulation in early adulthood and insufficient modulation in aging are deleterious to brain function and cognition, thus challenging a prevailing view of monotonic D1DR function across the adult lifespan.
  •  
3.
  • Karalija, Nina, 1984-, et al. (författare)
  • Cardiovascular factors are related to dopamine integrity and cognition in aging
  • 2019
  • Ingår i: Annals of Clinical and Translational Neurology. - : Wiley-Blackwell. - 2328-9503. ; 6:11, s. 2291-2303
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aging brain undergoes several changes, including reduced vascular, structural, and dopamine (DA) system integrity. Such brain changes have been associated with age‐related cognitive deficits. However, their relative importance, interrelations, and links to risk factors remain elusive.Methods: The present work used magnetic resonance imaging and positron emission tomography with 11C‐raclopride to jointly examine vascular parameters (white‐matter lesions and perfusion), DA D2‐receptor availability, brain structure, and cognitive performance in healthy older adults (n = 181, age: 64–68 years) from the Cognition, Brain, and Aging (COBRA) study.Results: Covariance was found among several brain indicators, where top predictors of cognitive performance included caudate and hippocampal integrity (D2DR availability and volumes), and cortical blood flow and regional volumes. White‐matter lesion burden was negatively correlated with caudate DA D2‐receptor availability and white‐matter microstructure. Compared to individuals with smaller lesions, individuals with confluent lesions (exceeding 20 mm in diameter) had reductions in cortical and hippocampal perfusion, striatal and hippocampal D2‐receptor availability, white‐matter microstructure, and reduced performance on tests of episodic memory, sequence learning, and processing speed. Higher cardiovascular risk as assessed by treatment for hypertension, systolic blood pressure, overweight, and smoking was associated with lower frontal cortical perfusion, lower putaminal D2DR availability, smaller grey‐matter volumes, a larger number of white‐matter lesions, and lower episodic memory performance.Interpretation: Taken together, these findings suggest that reduced cardiovascular health is associated with poorer status for brain variables that are central to age‐sensitive cognitive functions, with emphasis on DA integrity.
  •  
4.
  • Karalija, Nina, 1984-, et al. (författare)
  • High long-term test-retest reliability for extrastriatal C-11-raclopride binding in healthy older adults
  • 2020
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 40:9, s. 1859-1868
  • Tidskriftsartikel (refereegranskat)abstract
    • In vivo dopamine D2-receptor availability is frequently assessed with C-11-raclopride and positron emission tomography. Due to low signal-to-noise ratios for C-11-raclopride in areas with low D2 receptor densities, the ligand has been considered unreliable for measurements outside the dopamine-dense striatum. Intriguingly, recent studies show that extrastriatal C-11-raclopride binding potential (BPND) values are (i) reliably higher than in the cerebellum (where D2-receptor levels are negligible), (ii) correlate with behavior in the expected direction, and (iii) showed good test-retest reliability in a sample of younger adults. The present work demonstrates high seven-month test-retest reliability of striatal and extrastriatal C-11-raclopride BPND values in healthy, older adults (n = 27, age: 64-78 years). Mean C-11-raclopride BPND values were stable between test sessions in subcortical nuclei, and in frontal and temporal cortices (p > 0.05). Across all structures analyzed, intraclass correlation coefficients were high (0.85-0.96), absolute variability was low (mean: 4-8%), and coefficients of variance ranged between 9 and 25%. Furthermore, regional C-11-raclopride BPND values correlated with previously determined F-18-fallypride BPND values (rho = 0.97 and 0.92 in correlations with and without striatal values, respectively, p < 0.01) and postmortem determined D2-receptor densities (including striatum: rho = 0.92; p < 0.001; excluding striatum: rho = 0.75; p = 0.067). These observations suggest that extrastriatal C-11-raclopride measurements represent a true D2 signal.
  •  
5.
  • Karalija, Nina, 1984-, et al. (författare)
  • Longitudinal Dopamine D2 Receptor Changes and Cerebrovascular Health in Aging
  • 2022
  • Ingår i: Neurology. - 1526-632X .- 0028-3878. ; 99
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVES: Cross-sectional studies suggest marked dopamine (DA) decline in aging, but longitudinal evidence is lacking. The aim of this study was to estimate within-person decline rates for DA D2-like receptors (DRD2) in aging and examine factors that may contribute to individual differences in DRD2 decline rates. METHODS: We investigated 5-year within-person changes in DRD2 availability in a sample of older adults. At both occasions, PET with 11C-raclopride and MRI were used to measure DRD2 availability in conjunction with structural and vascular brain integrity. RESULTS: Longitudinal analyses of the sample (baseline: n = 181, ages: 64-68 years, 100 men and 81 women; 5-year follow-up: n = 129, 69 men and 60 women) revealed aging-related striatal and extrastriatal DRD2 decline, along with marked individual differences in rates of change. Notably, the magnitude of striatal DRD2 decline was ∼50% of past cross-sectional estimates, suggesting that the DRD2 decline rate has been overestimated in past cross-sectional studies. Significant DRD2 reductions were also observed in select extrastriatal regions, including hippocampus, orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Distinct profiles of correlated DRD2 changes were found across several associative regions (ACC, dorsal striatum, and hippocampus) and in the reward circuit (nucleus accumbens and OFC). DRD2 losses in associative regions were associated with white matter lesion progression, whereas DRD2 losses in limbic regions were related to reduced cortical perfusion. DISCUSSION: These findings provide the first longitudinal evidence for individual and region-specific differences of DRD2 decline in older age and support the hypothesis that cerebrovascular factors are linked to age-related dopaminergic decline.
  •  
6.
  • Karalija, Nina, 1984-, et al. (författare)
  • Longitudinal support for the correlative triad among aging, dopamine D2-like receptor loss, and memory decline
  • 2024
  • Ingår i: NEUROBIOLOGY OF AGING. - 0197-4580 .- 1558-1497. ; 136, s. 125-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopamine decline is suggested to underlie aging -related cognitive decline, but longitudinal examinations of this link are currently missing. We analyzed 5 -year longitudinal data for a sample of healthy, older adults (baseline: n = 181, age: 64-68 years; 5 -year follow-up: n = 129) who underwent positron emission tomography with 11C- raclopride to assess dopamine D2 -like receptor (DRD2) availability, magnetic resonance imaging to evaluate structural brain measures, and cognitive tests. Health, lifestyle, and genetic data were also collected. A datadriven approach (k -means cluster analysis) identified groups that differed maximally in DRD2 decline rates in age -sensitive brain regions. One group (n = 47) had DRD2 decline exclusively in the caudate and no cognitive decline. A second group (n = 72) had more wide -ranged DRD2 decline in putamen and nucleus accumbens and also in extrastriatal regions. The latter group showed significant 5 -year working memory decline that correlated with putamen DRD2 decline, along with higher dementia and cardiovascular risk and a faster biological pace of aging. Taken together, for individuals with more extensive DRD2 decline, dopamine decline is associated with memory decline in aging.
  •  
7.
  • Köhncke, Ylva, et al. (författare)
  • Self-rated intensity of habitual physical activities is positively associated with dopamine D-2/3 receptor availability and cognition
  • 2018
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 181, s. 605-616
  • Tidskriftsartikel (refereegranskat)abstract
    • Between-person differences in cognitive performance in older age are associated with variations in physical activity. The neurotransmitter dopamine (DA) contributes to cognitive performance, and the DA system deteriorates with advancing age. Animal data and a patient study suggest that physical activity modulates DA receptor availability, but data from healthy humans are lacking. In a cross-sectional study with 178 adults aged 64-68 years, we investigated links among self-reported physical activity, D(2/3)DA receptor (D2/3DR) availability, and cognitive performance. D2/3DR availability was measured with [C-11]raclopride positron emission tomography at rest. We used structural equation modeling to obtain latent factors for processing speed, episodic memory, working memory, physical activity, and D2/3DR availability in caudate, putamen, and hippocampus. Physical activity intensity was positively associated with D2/3DR availability in caudate, but not putamen and hippocampus. Frequency of physical activity was not related to D2/3DR availability. Physical activity intensity was positively related to episodic memory and working memory. D2/3DR availability in caudate and hippocampus was positively related to episodic memory. Taken together, our results suggest that striatal DA availability might be a neurochemical correlate of episodic memory that is also associated with physical activity.
  •  
8.
  • Lövdén, Martin, et al. (författare)
  • Latent-Profile Analysis Reveals Behavioral and Brain Correlates of Dopamine-Cognition Associations
  • 2018
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 28:11, s. 3894-3907
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with C-11-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.
  •  
9.
  • Nordin, Kristin, et al. (författare)
  • DyNAMiC: A prospective longitudinal study of dopamine and brain connectomes : A new window into cognitive aging
  • 2022
  • Ingår i: Journal of Neuroscience Research. - : Wiley. - 0360-4012 .- 1097-4547. ; 100:6, s. 1296-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • Concomitant exploration of structural, functional, and neurochemical brain mechanisms underlying age-related cognitive decline is crucial in promoting healthy aging. Here, we present the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) project, a multimodal, prospective 5-year longitudinal study spanning the adult human lifespan. DyNAMiC examines age-related changes in the brain’s structural and functional connectome in relation to changes in dopamine D1 receptor availability (D1DR), and their associations to cognitive decline. Critically, due to the complete lack of longitudinal D1DR data, the true trajectory of one of the most age-sensitive dopamine systems remains unknown. The first DyNAMiC wave included 180 healthy participants (20–80 years). Brain imaging included magnetic resonance imaging assessing brain structure (white matter, gray matter, iron), perfusion, and function (during rest and task), and positron emission tomography (PET) with the [11C]SCH23390 radioligand. A subsample (n = 20, >65 years) was additionally scanned with [11C]raclopride PET measuring D2DR. Age-related variation was evident for multiple modalities, such as D1DR; D2DR, and performance across the domains of episodic memory, working memory, and perceptual speed. Initial analyses demonstrated an inverted u-shaped association between D1DR and resting-state functional connectivity across cortical network nodes, such that regions with intermediate D1DR levels showed the highest levels of nodal strength. Evident within each age group, this is the first observation of such an association across the adult lifespan, suggesting that emergent functional architecture depends on underlying D1DR systems. Taken together, DyNAMiC is the largest D1DR study worldwide, and will enable a comprehensive examination of brain mechanisms underlying age-related cognitive decline. 
  •  
10.
  • Nyberg, Lars, et al. (författare)
  • Dopamine D2 receptor availability is linked to hippocampal-caudate functional connectivity and episodic memory
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:28, s. 7918-7923
  • Tidskriftsartikel (refereegranskat)abstract
    • D1 and D2 dopamine receptors (D1DRs and D2DRs) may contribute differently to various aspects of memory and cognition. The D1DR system has been linked to functions supported by the prefrontal cortex. By contrast, the role of the D2DR system is less clear, although it has been hypothesized that D2DRs make a specific contribution to hippocampus-based cognitive functions. Here we present results from 181 healthy adults between 64 and 68 y of age who underwent comprehensive assessment of episodic memory, working memory, and processing speed, along with MRI and D2DR assessment with [C-11]raclopride and PET. Caudate D2DR availability was positively associated with episodic memory but not with working memory or speed. Whole-brain analyses further revealed a relation between hippocampal D2DR availability and episodic memory. Hippocampal and caudate D2DR availability were interrelated, and functional MRI-based resting-state functional connectivity between the ventral caudate and medial temporal cortex increased as a function of caudate D2DR availability. Collectively, these findings indicate that D2DRs make a specific contribution to hippocampus-based cognition by influencing striatal and hippocampal regions, and their interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy