SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Park Seyoung) "

Sökning: WFRF:(Park Seyoung)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Shin, Jae Ho, 1987, et al. (författare)
  • Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid
  • 2016
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: 5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of l-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of l-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than l-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient l-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using l-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose. Results: Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His 6 -Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H 36 promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1 g/L 5AVA with much reduced (2.0 g/L) production of glutaric acid. Conclusions:Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimizing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, production of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced fermentative production of the novel C5 platform chemical 5AVA from renewable resources.
  •  
3.
  • Kee, Seyoung, et al. (författare)
  • Highly Deformable and See‐Through Polymer Light‐Emitting Diodes with All‐Conducting‐Polymer Electrodes
  • 2017
  • Ingår i: Advanced Materials. - : John Wiley & Sons. - 0935-9648 .- 1521-4095. ; 30:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the high expectation of deformable and see-through displays for future ubiquitous society, current light-emitting diodes (LEDs) fail to meet the desired mechanical and optical properties, mainly because of the fragile transparent conducting oxides and opaque metal electrodes. Here, by introducing a highly conductive nanofibrillated conducting polymer (CP) as both deformable transparent anode and cathode, ultraflexible and see-through polymer LEDs (PLEDs) are demonstrated. The CP-based PLEDs exhibit outstanding dual-side light-outcoupling performance with a high optical transmittance of 75% at a wavelength of 550 nm and with an excellent mechanical durability of 9% bending strain. Moreover, the CP-based PLEDs fabricated on 4 µm thick plastic foils with all-solution processing have extremely deformable and foldable light-emitting functionality. This approach is expected to open a new avenue for developing wearable and attachable transparent displays.
  •  
4.
  • Kee, Seyoung, et al. (författare)
  • Tuning the Mechanical and Electrical Properties of Stretchable PEDOT:PSS/Ionic Liquid Conductors
  • 2020
  • Ingår i: Macromolecular Chemistry and Physics. - : John Wiley & Sons. - 1022-1352 .- 1521-3935. ; 221:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Conducting polymers (CPs) constitute a promising building block to establish next-generation stretchable electronics. However, achieving CPs with both high electrical conductivity and outstanding mechanical stretchability beyond flexibility is still a major challenge. Therefore, understanding the key factors controlling such characteristics of CPs is required. Herein, a method to simultaneously manipulate the mechanical and electrical properties of a representative CP, PEDOT:PSS, by modifying ionic liquid (IL) additives is reported. The cation/anion modification of ILs distinctly improves the electrical conductivity of PEDOT:PSS up to ≈1075 S cm−1, and the PEDOT:PSS/IL films showing higher conductivity also exhibit superior electromechanical stretchability, enabling them to maintain their initial conductivity under a tensile strain of 80%. Based on grazing incidence wide angle X-ray scattering and Fourier transform infrared spectroscopy analyses, it is found that the cation/anion-modified ILs control the crystallinity and π–π stacking density of conjugated PEDOT chains and the growth of amorphous PSS domains via IL-induced phase separation between PEDOT and PSS, which can be the origin of the significant conductivity and stretchability improvements in PEDOT:PSS/IL composites. This study provides guidance to develop highly stretchable CP-based conductors/electrodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy