SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parker R) ;pers:(Kordopatis G.)"

Sökning: WFRF:(Parker R) > Kordopatis G.

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Hawkins, K., et al. (författare)
  • Characterizing the high-velocity stars of RAVE: the discovery of a metal-rich halo star born in the Galactic disc
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 447:2, s. 2046-2058
  • Tidskriftsartikel (refereegranskat)abstract
    • We aim to characterize high-velocity (HiVel) stars in the solar vicinity both chemically and kinematically using the fourth data release of the RAdial Velocity Experiment (RAVE). We used a sample of 57 HiVel stars with Galactic rest-frame velocities larger than 275 km s(-1). With 6D position and velocity information, we integrated the orbits of the HiVel stars and found that, on average, they reach out to 13 kpc from the Galactic plane and have relatively eccentric orbits consistent with the Galactic halo. Using the stellar parameters and [alpha/Fe] estimates from RAVE, we found the metallicity distribution of the HiVel stars peak at [M/H] = -1.2 dex and is chemically consistent with the inner halo. There are a few notable exceptions that include a hypervelocity star candidate, an extremely HiVel bound halo star, and one star that is kinematically consistent with the halo but chemically consistent with the disc. High-resolution spectra were obtained for the metal-rich HiVel star candidate and the second highest velocity star in the sample. Using these high-resolution data, we report the discovery of a metal-rich halo star that has likely been dynamically ejected into the halo from the Galactic thick disc. This discovery could aid in explaining the assembly of the most metal-rich component of the Galactic halo.
  •  
5.
  • Valentini, M, et al. (författare)
  • RAVE stars in K2 : I. Improving RAVE red giants spectroscopy using asteroseismology from K2 Campaign 1
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a set of 87 RAVE stars with detected solar like oscillations, observed during Campaign 1 of the K2 mission (RAVE K2-C1 sample). This data set provides a useful benchmark for testing the gravities provided in RAVE data release 4 (DR4), and is key for the calibration of the RAVE data release 5 (DR5). The RAVE survey collected medium-resolution spectra (R = 7500) centred in the Ca II triplet(8600 Å) wavelength interval, which although being very useful for determining radial velocity and metallicity, even at low S/N, is known be affected by a log (g)-Teff degeneracy. This degeneracy is the cause of the large spread in the RAVE DR4 gravities for giants. The understanding of the trends and offsets that affects RAVE atmospheric parameters, and in particular log (g), is a crucial step in obtaining not only improved abundance measurements, but also improved distances and ages. In the present work, we use two different pipelines, GAUFRE and Sp-Ace, to determine atmospheric parameters and abundances by fixing log (g) to the seismic one. Our strategy ensures highly consistent values among all stellar parameters, leading to more accurate chemical abundances. A comparison of the chemical abundances obtained here with and without the use of seismic log (g) information has shown that an underestimated (overestimated) gravity leads to an underestimated (overestimated) elemental abundance (e.g. [Mg/H] is underestimated by ∼0.25 dex when the gravity is underestimated by 0.5 dex). We then perform a comparison between the seismic gravities and the spectroscopic gravities presented in the RAVE DR4 catalogue, extracting a calibration for log (g) of RAVE giants in the colour interval 0.50 < (J-KS) < 0.85. Finally, we show a comparison of the distances, temperatures, extinctions (and ages) derived here for our RAVE K2-C1 sample with those derived in RAVE DR4 and DR5. DR5 performs better than DR4 thanks to the seismic calibration, although discrepancies can still be important for objects for which the difference between DR4/DR5 and seismic gravities differ by more than ∼0.5 dex. The method illustrated in this work will be used for analysing RAVE targets present in the other K2 campaigns, in the framework of Galactic Archaeology investigations.
  •  
6.
  • Antoja, T., et al. (författare)
  • Asymmetric metallicity patterns in the stellar velocity space with RAVE
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The chemical abundances of stars encode information on their place and time of origin. Stars formed together in e.g. a cluster, should present chemical homogeneity. Also disk stars influenced by the effects of the bar and the spiral arms might have distinct chemical signatures depending on the type of orbit that they follow, e.g. from the inner versus outer regions of the Milky Way.Aims. We explore the correlations between velocity and metallicity and the possible distinct chemical signatures of the velocity over-densities of the local Galactic neighbourhood.Methods. We use the large spectroscopic survey RAVE and the Geneva Copenhagen Survey. We compare the metallicity distribution of regions in the velocity plane (upsilon(R), upsilon(phi)) with that of their symmetric counterparts (-upsilon(R), upsilon(phi)). We expect similar metallicity distributions if there are no tracers of a sub-population (e.g. a dispersed cluster, accreted stars), if the disk of the Galaxy is axisymmetric, and if the orbital effects of the bar and the spiral arms are weak.Results. We find that the metallicity-velocity space of the solar neighbourhood is highly patterned. A large fraction of the velocity plane shows differences in the metallicity distribution when comparing symmetric upsilon(R) regions. The typical differences in the median metallicity are of 0 : 05 dex with statistical significant of at least 95% confidence, and with values up to 0 : 6 dex. For stars with low azimuthal velocity v(phi), the ones moving outwards. These include stars in the Hercules and Hyades moving groups and other velocity branch-like structures. For higher v(phi), the stars moving inwards have higher metallicity than those moving outwards. We have also discovered a positive gradient in v(phi) with resp ect to metallicity at high metallicities, apart from the two known positive and negative gradients for the thick and thin disks.Conclusions. The most likely interpretation of the metallicity asymmetry is that it is mainly due to the orbital effects of the Galactic bar and the radial metallicity gradient of the disk. We present a simulation that supports this idea.
  •  
7.
  • Binney, J., et al. (författare)
  • New distances to RAVE stars
  • 2014
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 437, s. 351-370
  • Tidskriftsartikel (refereegranskat)
  •  
8.
  • Carrillo, I., et al. (författare)
  • Is the Milky Way still breathing? RAVE-Gaia streaming motions
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 475:2, s. 2679-2696
  • Tidskriftsartikel (refereegranskat)abstract
    • We use data from the Radial Velocity Experiment (RAVE) and the Tycho-Gaia astrometric solution (TGAS) catalogue to compute the velocity fields yielded by the radial (V-R), azimuthal (V-phi), and vertical (V-z) components of associated Galactocentric velocity. We search in particular for variation in all three velocity components with distance above and below the disc midplane, as well as how each component of V-z (line-of-sight and tangential velocity projections) modifies the obtained vertical structure. To study the dependence of velocity on proper motion and distance, we use two main samples: a RAVE sample including proper motions from the Tycho-2, PPMXL, and UCAC4 catalogues, and a RAVE-TGAS sample with inferred distances and proper motions from the TGAS and UCAC5 catalogues. In both samples, we identify asymmetries in V-R and V-z. Below the plane, we find the largest radial gradient to be partial derivative V-R/partial derivative R = -7.01 +/- 0.61 km s(-1) kpc(-1), in agreement with recent studies. Above the plane, we find a similar gradient with partial derivative V-R/partial derivative R = -9.42 +/- 1.77 km s(-1) kpc(-1). By comparing our results with previous studies, we find that the structure in V-z is strongly dependent on the adopted proper motions. Using the Galaxia Milky Way model, we demonstrate that distance uncertainties can create artificial wave-like patterns. In contrast to previous suggestions of a breathing mode seen in RAVE data, our results support a combination of bending and breathing modes, likely generated by a combination of external or internal and external mechanisms.
  •  
9.
  • Guiglion, G., et al. (författare)
  • The RAdial Velocity Experiment (RAVE) : Parameterisation of RAVE spectra based on convolutional neural networks
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 644
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Data-driven methods play an increasingly important role in the field of astrophysics In the context of large spectroscopic surveys of stars, data-driven methods are key in deducing physical parameters for millions of spectra in a short time. Convolutional neural networks (CNNs) enable us to connect observables (e.g. spectra, stellar magnitudes) to physical properties (atmospheric parameters, chemical abundances, or labels in general). Aims. We test whether it is possible to transfer the labels derived from a high-resolution stellar survey to intermediate-resolution spectra of another survey by using a CNN. Methods. We trained a CNN, adopting stellar atmospheric parameters and chemical abundances from APOGEE DR16 (resolution Ra22 500) data as training set labels. As input, we used parts of the intermediate-resolution RAVE DR6 spectra (R ∼ 7500) overlapping with the APOGEE DR16 data as well as broad-band ALLWISE and 2MASS photometry, together with Gaia DR2 photometry and parallaxes. Results. We derived precise atmospheric parameters Teff, log(g), and [M/H], along with the chemical abundances of [Fe/H], [α/M], [Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe] for 420 165 RAVE spectra. The precision typically amounts to 60 K in Teff, 0.06 in log(g) and 0.02-0.04 dex for individual chemical abundances. Incorporating photometry and astrometry as additional constraints substantially improves the results in terms of the accuracy and precision of the derived labels, as long as we operate in those parts of the parameter space that are well-covered by the training sample. Scientific validation confirms the robustness of the CNN results. We provide a catalogue of CNN-Trained atmospheric parameters and abundances along with their uncertainties for 420 165 stars in the RAVE survey. Conclusions. CNN-based methods provide a powerful way to combine spectroscopic, photometric, and astrometric data without the need to apply any priors in the form of stellar evolutionary models. The developed procedure can extend the scientific output of RAVE spectra beyond DR6 to ongoing and planned surveys such as Gaia RVS, 4MOST, and WEAVE. We call on the community to place a particular collective emphasis and on efforts to create unbiased training samples for such future spectroscopic surveys.
  •  
10.
  • Kordopatis, G., et al. (författare)
  • In the thick of it: metal-poor disc stars in RAVE
  • 2013
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 436, s. 3231-3246
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy