SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parkinson K.) ;lar1:(uu)"

Sökning: WFRF:(Parkinson K.) > Uppsala universitet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • de Jong, R. S., et al. (författare)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • Ingår i: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
3.
  • Kousathanas, A, et al. (författare)
  • Whole-genome sequencing reveals host factors underlying critical COVID-19
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 607:7917, s. 97-
  • Tidskriftsartikel (refereegranskat)abstract
    • Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.
  •  
4.
  • Weltman, A., et al. (författare)
  • Fundamental physics with the Square Kilometre Array
  • 2020
  • Ingår i: Publications Astronomical Society of Australia. - : CAMBRIDGE UNIV PRESS. - 1323-3580 .- 1448-6083. ; 37
  • Forskningsöversikt (refereegranskat)abstract
    • The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio telescope. The SKA will address many important topics in astronomy, ranging from planet formation to distant galaxies. However, in this work, we consider the perspective of the SKA as a facility for studying physics. We review four areas in which the SKA is expected to make major contributions to our understanding of fundamental physics: cosmic dawn and reionisation; gravity and gravitational radiation; cosmology and dark energy; and dark matter and astroparticle physics. These discussions demonstrate that the SKA will be a spectacular physics machine, which will provide many new breakthroughs and novel insights on matter, energy, and spacetime.
  •  
5.
  • Beisvåg, Vidar, et al. (författare)
  • Contributions of the EMERALD project to assessing and improving microarray data quality
  • 2011
  • Ingår i: BioTechniques. - : Future Science Ltd. - 0736-6205 .- 1940-9818. ; 50:1, s. 27-31
  • Tidskriftsartikel (refereegranskat)abstract
    • While minimum information about a microarray experiment (MIAME) standards have helped to increase the value of the microarray data deposited into public databases like ArrayExpress and Gene Expression Omnibus (GEO), limited means have been available to assess the quality of this data or to identify the procedures used to normalize and transform raw data. The EMERALD FP6 Coordination Action was designed to deliver approaches to assess and enhance the overall quality of microarray data and to disseminate these approaches to the microarray community through an extensive series of workshops, tutorials, and symposia. Tools were developed for assessing data quality and used to demonstrate how the removal of poor-quality data could improve the power of statistical analyses and facilitate analysis of multiple joint microarray data sets. These quality metrics tools have been disseminated through publications and through the software package arrayQualityMetrics. Within the framework provided by the Ontology of Biomedical Investigations, ontology was developed to describe data transformations, and software ontology was developed for gene expression analysis software. In addition, the consortium has advocated for the development and use of external reference standards in microarray hybridizations and created the Molecular Methods (MolMeth) database, which provides a central source for methods and protocols focusing on microarray-based technologies.
  •  
6.
  • Klar, Jessica K., et al. (författare)
  • Isotopic signature of dissolved iron delivered to the Southern Ocean from hydrothermal vents in the East Scotia Sea
  • 2017
  • Ingår i: Geology. - 0091-7613 .- 1943-2682. ; 45:4, s. 351-354
  • Tidskriftsartikel (refereegranskat)abstract
    • It has recently been demonstrated that hydrothermal vents are an important source of dissolved Fe (dFe) to the Southern Ocean. The isotopic composition (delta Fe-56) of dFe in vent fluids appears to be distinct from other sources of dFe to the deep ocean, but the evolution of delta Fe-56 during mixing between vent fluids and seawater is poorly constrained. Here we present the evolution of delta Fe-56 for dFe in hydrothermal fluids and dispersing plumes from two sites in the East Scotia Sea. We show that delta Fe-56 values in the buoyant plume are distinctly lower (as low as -1.19 parts per thousand) than the hydrothermal fluids (-0.29 parts per thousand), attributed to (1) precipitation of Fe sulfides in the early stages of mixing, and (2) partial oxidation of Fe(II) to Fe(III), >55% of which subsequently precipitates as Fe oxyhydroxides. By contrast, the delta Fe-56 signature of stabilized dFe in the neutrally buoyant plume is -0.3 parts per thousand to -0.5 parts per thousand. This cannot be explained by continued dilution of the buoyant plume with background seawater; rather, we suggest that isotope fractionation of dFe occurs during plume dilution due to Fe ligand complexation and exchange with labile particulate Fe. The delta Fe-56 signature of stabilized hydrothermal dFe in the East Scotia Sea is distinct from background seawater and may be used to quantify the hydrothermal dFe input to the ocean interior.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy