SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paschalis S.) ;pers:(Jonson Björn 1941)"

Sökning: WFRF:(Paschalis S.) > Jonson Björn 1941

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Reifarth, R., et al. (författare)
  • Nuclear astrophysics with radioactive ions at FAIR
  • 2016
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 665:1
  • Konferensbidrag (refereegranskat)abstract
    • The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process beta-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
  •  
2.
  • Heine, M., et al. (författare)
  • Determination of the neutron-capture rate of C-17 for r-process nucleosynthesis
  • 2017
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 95:1, s. Article no 014613 -
  • Tidskriftsartikel (refereegranskat)abstract
    • With the (RB)-B-3-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of C-18 at a projectile energy around 425A MeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of C-17 into the ground state of C-18. Those data have been used to constrain theoretical calculations for transitions populating excited states in C-18. This allowed to derive the astrophysical cross section sigma(n gamma)*. accounting for the thermal population of C-17 target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures T-9
  •  
3.
  • Chakraborty, S., et al. (författare)
  • Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb breakup
  • 2014
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 66
  • Konferensbidrag (refereegranskat)abstract
    • Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s) - νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al. © Owned by the authors, published by EDP Sciences, 2014.
  •  
4.
  • Rahaman, A., et al. (författare)
  • Study of ground state wave-function of the Neutron-rich 29,30Na isotopes through coulomb breakup
  • 2014
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 66
  • Konferensbidrag (refereegranskat)abstract
    • Coulomb breakup of unstable neutron rich nuclei 29,30Na around the 'island of inversion' has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s) νs1/2 and 29Na(g.s) νs1/2,respectively. © Owned by the authors, published by EDP Sciences, 2014.
  •  
5.
  • Röder, M., et al. (författare)
  • Coulomb dissociation of 20,21 N
  • 2016
  • Ingår i: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993 .- 0556-2813. ; 93:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is up to a factor of 5 higher at T
  •  
6.
  • Thies, Ronja, 1987, et al. (författare)
  • Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes
  • 2016
  • Ingår i: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993 .- 0556-2813. ; 93:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from C10,12-18 and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1pxn) for relativistic C10,12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the epax code is not able to describe the data satisfactorily. Using abrabla07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease abrabla07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.
  •  
7.
  • Vandebrouck, M., et al. (författare)
  • Effective proton-neutron interaction near the drip line from unbound states in F-25,F-26
  • 2017
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 96:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Odd-odd nuclei, around doubly closed shells, have been extensively used to study proton-neutron interactions. However, the evolution of these interactions as a function of the binding energy, ultimately when nuclei become unbound, is poorly known. The F-26 nucleus, composed of a deeply bound pi 0d(5/2) proton and an unbound v0d(3/2) neutron on top of an O-24 core, is particularly adapted for this purpose. The coupling of this proton and neutron results in a J(pi) = 1(1)(+) - 4(1)(+) multiplet, whose energies must be determined to study the influence of the proximity of the continuum on the corresponding proton-neutron interaction. The J(pi) = 1(1)(+), 2(1)(+), 4(1)(+) bound states have been determined, and only a clear identification of the J(pi) = 3(1)(+) is missing. Purpose: We wish to complete the study of the J(pi) = 1(1)(+) - 4(1)(+) multiplet in F-26, by studying the energy and width of the J(pi) = 3(1)(+) unbound state. The method was first validated by the study of unbound states in F-25, for which resonances were already observed in a previous experiment. Method: Radioactive beams of Ne-26 and Ne-27, produced at about 440AMeV by the fragment separator at the GSI facility were used to populate unbound states in F-25 and F-26 via one-proton knockout reactions on a CH2 target, located at the object focal point of the (RB)-B-3/LAND setup. The detection of emitted. rays and neutrons, added to the reconstruction of the momentum vector of the A - 1 nuclei, allowed the determination of the energy of three unbound states in F-25 and two in F-26. Results: Based on its width and decay properties, the first unbound state in F-25, at the relative energy of 49(9) keV, is proposed to be a J(pi) = 1/ 2(-) arising from a p1/2 proton- hole state. In F-26, the first resonance at 323(33) keV is proposed to be the J(pi) = 3(1)(+) member of the J(pi) = 1(1)(+) - 4(1)(+) multiplet. Energies of observed states in F-25,F-26 have been compared to calculations using the independent-particle shell model, a phenomenological shell model, and the ab initio valence-space in-medium similarity renormalization group method. Conclusions: The deduced effective proton- neutron interaction is weakened by about 30-40% in comparison to the models, pointing to the need for implementing the role of the continuum in theoretical descriptions or to a wrong determination of the atomic mass of F-26.
  •  
8.
  • Bhattacharyya, A., et al. (författare)
  • Neutron capture cross sections of light neutron-rich nuclei relevant for -process nucleosynthesis
  • 2021
  • Ingår i: Physical Review C. - 2469-9993 .- 2469-9985. ; 104:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The measurements of neutron capture cross sections of neutron-rich nuclei are challenging but essential for understanding nucleosynthesis and stellar evolution processes in the explosive burning scenario. In the quest of -process abundances, according to the neutrino-driven-wind model, light neutron-rich unstable nuclei may play a significant role as seed nuclei that influence the abundance pattern. Hence, experimental data for neutron capture cross sections of neutron-rich nuclei are needed. Coulomb dissociation of radioactive ion beams at intermediate energy is a powerful indirect method for inferring capture cross section. As a test case for validation of the indirect method, the neutron capture cross section (, ) for was inferred from the Coulomb dissociation of at intermediate energy ( MeV). A comparison between different theoretical approaches and experimental results for the reaction is discussed. We report for the first time experimental reaction cross sections of , , , and . The reaction cross sections were inferred indirectly through Coulomb dissociation of , , and at incident projectile energies around 400-430 MeV using the FRS-LAND setup at GSI, Darmstadt. The neutron capture cross sections were obtained from the photoabsorption cross sections with the aid of the detailed balance theorem. The reaction rates for the neutron-rich Na, Mg, Al nuclei at typical -process temperatures were obtained from the measured () capture cross sections. The measured neutron capture reaction rates of the neutron-rich nuclei, , , and are significantly lower than those predicted by the Hauser-Feshbach decay model. A similar trend was observed earlier for and but in the case of the trend is opposite. The situation is more complicated when the ground state has a multi-particle-hole configuration. For , the measured cross section is about higher than the Hauser-Feshbach prediction.
  •  
9.
  • Datta, U., et al. (författare)
  • Direct experimental evidence for a multiparticle-hole ground state configuration of deformed Mg-33
  • 2016
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 94:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The first direct experimental evidence of a multiparticle-hole ground state configuration of the neutron-rich Mg-33 isotope has been obtained via intermediate energy (400 A MeV) Coulomb dissociation measurement. The major part similar to(70 +/- 13)% of the cross section is observed to populate the excited states of Mg-32 after the Coulomb breakup of Mg-33. The shapes of the differential Coulomb dissociation cross sections in coincidence with different core excited states favor that the valence neutron occupies both the s(1/2) and p(3/2) orbitals. These experimental findings suggest a significant reduction and merging of sd-pf shell gaps at N similar to 20 and 28. The ground state configuration of Mg-33 is predominantly a combination of Mg-32(3.0,3.5MeV; 2(-), 1(-)) circle times nu(s1/2), Mg-32(2.5MeV; 2(+)) circle times nu(p3/2), and Mg-32(0; 0(+)) circle times nu(p3/2). The experimentally obtained quantitative spectroscopic information for the valence neutron occupation of the s and p orbitals, coupled with different core states, is in agreement with Monte Carlo shell model (MCSM) calculation using 3 MeV as the shell gap at N = 20.
  •  
10.
  • Rahaman, A., et al. (författare)
  • Coulomb breakup of neutron-rich Na-29,Na-30 isotopes near the island of inversion
  • 2017
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 44:4, s. 045101-
  • Tidskriftsartikel (refereegranskat)abstract
    • First results are reported on the ground state configurations of the neutron-rich Na-29,Na-30 isotopes, obtained via Coulomb dissociation (CD) measurements. The invariant mass spectra of these nuclei have been obtained through measurement of the four-momenta of all decay products after Coulomb excitation of those nuclei on a Pb-208 target at energies of 400-430 MeV/nucleon using the FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated inclusive CD cross-sections (CD) of 89 (7) mb and 167 (13) mb for one neutron removal from Na-29 and Na-30, respectively, have been extracted up to an excitation energy of 10 MeV. The major part of one neutron removal, CD cross-sections of those nuclei populate the core, in its ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of Na-29 (3/2(+)) and Na-30 (2(+)) is the d-orbital with a small contribution from the s-orbital, which are coupled with the ground state of the core. One of the major components of the ground state configurations of these nuclei are Na-28(gs)(1(+)) circle times v(s,d) and Na-29(gs)(3/2(+)) circle times v(s,d), respectively. The ground state spin and parity of these nuclei obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the s and d orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with shell model calculation using the MCSM suggests a lower limit of around 4.3 MeV of the sd-pf shell gap in Na-30.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy