SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pasero Marco) "

Sökning: WFRF:(Pasero Marco)

  • Resultat 1-10 av 36
  • [1]234Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biagion, Cristian, et al. (författare)
  • The crystal structure of turneaureite, Ca<sub>5</sub>(AsO<sub>4</sub>)<sub>3</sub>Cl, the arsenate analog of chlorapatite and its relationships with the arsenate apatites johnbaumite and svabite
  • 2017
  • Ingår i: American Mineralogist. - 0003-004X .- 1945-3027. ; 102, s. 1981-1986
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The crystal structure of turneaureite, ideally Ca<sub>5</sub>(AsO<sub>4</sub>)<sub>3</sub>Cl, was studied using a specimen from the Brattfors mine, Nordmark, Värmland, Sweden, by means of single-crystal X-ray diffraction data. The structure was refinedto R1 = 0.017 on the basis of 716 unique reflectios with F<sub>o</sub> &gt; 4σ(F<sub>o</sub>) in the <em>P</em>6<sub>3</sub>/<em>m</em> space group, with unit-cell parameters <em>a</em> = 9.9218(3), <em>c </em>= 6.8638(2) Å, V = 585.16(4) Å<sup>3</sup>. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%; average of 10 spot analyses): SO<sub>3</sub> 0.22, P<sub>2</sub>O<sub>5</sub> 0.20, V<sub>2</sub>O<sub>5</sub> 0.01, As<sub>2</sub>O<sub>5</sub> 51.76, SiO<sub>2</sub> 0.06, CaO 41.39, MnO 1.89, SrO 0.12, BaO 0.52, PbO 0.10, Na2O 0.02, F 0.32, Cl 2.56, H<sub>2</sub>O<sub>calc</sub> 0.58, O(≡F+Cl) –0.71, total 99.04. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca<sub>4.82</sub>Mn<sub>0.17</sub>Ba<sub>0.02</sub>Sr<sub>0.01</sub>)∑<sub>5.02</sub> (As<sub>2.94</sub>P<sub>0.02</sub>S<sub>0.02</sub>Si<sub>0.01</sub>)<sub>∑2.99</sub>O<sub>12</sub>[Cl<sub>0.47</sub>(OH)<sub>0.42</sub>F<sub>0.11</sub>]<sub>∑1.00</sub>.Turneaureite is topologically similar to the other members of the apatite supergroup: columns of face-sharing M1 polyhedra running along c are connected through TO<sub>4</sub> tetrahedra with channels hosting M2 cations and X anions. Owing to its particular chemical composition, the studied turneaureite can be considered as a ternary calcium arsenate apatite; consequently it has several partially filledanion sites within the anion columns. Polarized single-crystal FTIR spectra of the studied sample indicate stronger hydrogen bonding and less diverse short-range atom arrangements around (OH) groups in turneaureite as compared to the related minerals johnbaumite and svabite. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.</p>
  •  
2.
  •  
3.
  • Biagioni, Cristian, et al. (författare)
  • Nuove specie mineralogiche Italiane
  • 2019
  • Ingår i: Rivista Mineralogica Italiana. ; 43:4, s. 256-262
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
4.
  • Biagioni, Cristian, et al. (författare)
  • Nuovi minerali Italiana - La approvazioni 2017
  • 2018
  • Ingår i: Revista Mineralogica Italiana. - Milano, Italy. - 0391-9641. ; 42:3, s. 190-197
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
5.
  • Biagioni, Cristian, et al. (författare)
  • The crystal structure of svabite, Ca<sub>5</sub>(AsO<sub>4</sub>)<sub>3</sub>F, an arsenate member of the apatite supergroup
  • 2016
  • Ingår i: American Mineralogist. - 0003-004X .- 1945-3027. ; 101, s. 1750-1755
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The crystal structure of svabite, ideally Ca<sub>5</sub>(AsO<sub>4</sub>)<sub>3</sub>F, was studied using a specimen from the Jakobsberg mine, Värmland, Sweden, by means of single-crystal X‑ray diffraction data. The structure was refined to <em>R</em><sub>1</sub> = 0.032 on the basis of 928 unique reflections with <em>F</em><sub>o</sub> &gt; 4s(<em>F</em><sub>o</sub>) in the <em>P</em>6<sub>3</sub>/<em>m </em>space group, with unit-cell parameters <em>a </em>= 9.7268(5), <em>c </em>= 6.9820(4) Å, <em>V </em>= 572.07(5) Å3. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%, average of 10 spot analyses): SO<sub>3</sub> 0.49, P<sub>2</sub>O<sub>5</sub> 0.21, V<sub>2</sub>O<sub>5</sub> 0.04, As<sub>2</sub>O<sub>5</sub> 51.21, SiO<sub>2</sub> 0.19, CaO 39.31, MnO 0.48, SrO 0.03, PbO 5.19, Na<sub>2</sub>O 0.13, F 2.12, Cl 0.08, H<sub>2</sub>O<sub>calc</sub> 0.33, O (≡ F+Cl) –0.91, total 98.90. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca<sub>4.66</sub>Pb<sub>0.16</sub>Mn<sub>0.04</sub>Na<sub>0.03</sub>)<sub>Σ4.89</sub>(As<sub>2.96</sub>S<sub>0.04</sub>Si<sub>0.02</sub>P<sub>0.02</sub>)<sub>Σ3.04</sub>O<sub>12</sub>[F<sub>0.74</sub>(OH)<sub>0.24</sub>Cl<sub>0.01</sub>]. Svabite is topologically similar to the other members of the apatite supergroup: columns of face-sharing <em>M</em>1 polyhedra running along <strong>c </strong>are connected through <em>T</em>O<sub>4</sub> tetrahedra with channels hosting <em>M</em>2 cations and <em>X </em>anions. The crystal structure of synthetic Ca<sub>5</sub>(AsO<sub>4</sub>)<sub>3</sub>F was previously reported as triclinic. On the contrary, the present refinement of the crystal structure of svabite shows no deviations from the hexagonal symmetry. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.</p>
  •  
6.
  • Bosi, Ferdinando, et al. (författare)
  • On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions
  • 2019
  • Ingår i: Mineralogical magazine. - 0026-461X .- 1471-8022. ; 83:5, s. 627-632
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Mineral species should be identified by an end-member formula and by using the dominant-valency rule as recommended by the IMA–CNMNC. However, the dominant-end-member approach has also been used in the literature. These two approaches generally converge, but for some intermediate compositions, significant differences between the dominant-valency rule and the dominant end-member approach can be observed. As demonstrated for garnet-supergroup minerals, for example, the end-member approach is ambiguous, as end-member proportions strongly depend on the calculation sequence. For this reason, the IMA–CNMNC strongly recommends the use of the dominant-valency rule for mineral nomenclature, because it alone may lead to unambiguous mineral identification. Although the simple application of the dominant-valency rule is successful for the identification of many mineral compositions, sometimes it leads to unbalanced end-member formulae, due to the occurrence of a coupled heterovalent substitution at two sites along with a heterovalent substitution at a single site. In these cases, it may be useful to use the site-total-charge approach to identify the dominant root-charge arrangement on which to apply the dominant-constituent rule. The dominant-valency rule and the site-totalcharge approach may be considered two procedures complementary to each other for mineral identification. Their critical point is to find the most appropriate root-charge and atomic arrangements consistent with the overriding condition dictated by the end-member formula. These procedures were approved by the IMA−CNMNC in May 2019.</p><p></p>
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36
  • [1]234Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy