SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pato Carlos N) ;mspu:(article)"

Sökning: WFRF:(Pato Carlos N) > Tidskriftsartikel

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Charney, Alexander W, et al. (författare)
  • Contribution of Rare Copy Number Variants to Bipolar Disorder Risk Is Limited to Schizoaffective Cases.
  • 2019
  • Ingår i: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 86:2, s. 110-119
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic risk for bipolar disorder (BD) is conferred through many common alleles, while a role for rare copy number variants (CNVs) is less clear. Subtypes of BD including schizoaffective disorder bipolar type (SAB), bipolar I disorder (BD I), and bipolar II disorder (BD II) differ according to the prominence and timing of psychosis, mania, and depression. The genetic factors contributing to the combination of symptoms among these subtypes are poorly understood.Rare large CNVs were analyzed in 6353 BD cases (3833 BD I [2676 with psychosis, 850 without psychosis, and 307 with unknown psychosis history], 1436 BD II, 579 SAB, and 505 BD not otherwise specified) and 8656 controls. CNV burden and a polygenic risk score (PRS) for schizophrenia were used to evaluate the relative contributions of rare and common variants to risk of BD, BD subtypes, and psychosis.CNV burden did not differ between BD and controls when treated as a single diagnostic entity. However, burden in SAB was increased relative to controls (p = .001), BD I (p = .0003), and BD II (p = .0007). Burden and schizophrenia PRSs were increased in SAB compared with BD I with psychosis (CNV p = .0007, PRS p = .004), and BD I without psychosis (CNV p = .0004, PRS p = 3.9 × 10-5). Within BD I, psychosis was associated with increased schizophrenia PRSs (p = .005) but not CNV burden.CNV burden in BD is limited to SAB. Rare and common genetic variants may contribute differently to risk for psychosis and perhaps other classes of psychiatric symptoms.
  •  
2.
  • Noh, Hyun Ji, et al. (författare)
  • Integrating evolutionary and regulatory information with multispecies approach implicates genes and pathways in obsessive-compulsive disorder
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Obsessive-compulsive disorder is a severe psychiatric disorder linked to abnormalities in glutamate signaling and the cortico-striatal circuit. We sequenced coding and regulatory elements for 608 genes potentially involved in obsessive-compulsive disorder in human, dog, and mouse. Using a new method that prioritizes likely functional variants, we compared 592 cases to 560 controls and found four strongly associated genes, validated in a larger cohort. NRXN1 and HTR2A are enriched for coding variants altering postsynaptic protein-binding domains. CTTNBP2 (synapse maintenance) and REEP3 (vesicle trafficking) are enriched for regulatory variants, of which at least six (35%) alter transcription factor-DNA binding in neuroblastoma cells. NRXN1 achieves genome-wide significance (p = 6.37 x 10(-11)) when we include 33,370 population-matched controls. Our findings suggest synaptic adhesion as a key component in compulsive behaviors, and show that targeted sequencing plus functional annotation can identify potentially causative variants, even when genomic data are limited.
  •  
3.
  • Pardiñas, Antonio F., et al. (författare)
  • Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia
  • 2022
  • Ingår i: JAMA psychiatry. - Chicago, IL, United States : American Medical Association. - 2168-6238 .- 2168-622X. ; 79:3, s. 260-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance  About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts.Objective  To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples.Design, Setting, and Participants  Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10 501) and individuals with non-TRS (n = 20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]).Main Outcomes and Measures  GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition.Results  The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P = .04).Conclusions and Relevance  In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy