SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pattaro Cristian) ;pers:(Hicks Andrew A.)"

Sökning: WFRF:(Pattaro Cristian) > Hicks Andrew A.

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aulchenko, Yurii S, et al. (författare)
  • Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41:1, s. 47-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association (GWA) studies of lipids have been conducted in samples ascertained for other phenotypes, particularly diabetes. Here we report the first GWA analysis of loci affecting total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglycerides sampled randomly from 16 population-based cohorts and genotyped using mainly the Illumina HumanHap300-Duo platform. Our study included a total of 17,797-22,562 persons, aged 18-104 years and from geographic regions spanning from the Nordic countries to Southern Europe. We established 22 loci associated with serum lipid levels at a genome-wide significance level (P < 5 x 10(-8)), including 16 loci that were identified by previous GWA studies. The six newly identified loci in our cohort samples are ABCG5 (TC, P = 1.5 x 10(-11); LDL, P = 2.6 x 10(-10)), TMEM57 (TC, P = 5.4 x 10(-10)), CTCF-PRMT8 region (HDL, P = 8.3 x 10(-16)), DNAH11 (LDL, P = 6.1 x 10(-9)), FADS3-FADS2 (TC, P = 1.5 x 10(-10); LDL, P = 4.4 x 10(-13)) and MADD-FOLH1 region (HDL, P = 6 x 10(-11)). For three loci, effect sizes differed significantly by sex. Genetic risk scores based on lipid loci explain up to 4.8% of variation in lipids and were also associated with increased intima media thickness (P = 0.001) and coronary heart disease incidence (P = 0.04). The genetic risk score improves the screening of high-risk groups of dyslipidemia over classical risk factors.
  •  
2.
  • Demirkan, Ayse, et al. (författare)
  • Genome-Wide Association Study Identifies Novel Loci Associated with Circulating Phospho- and Sphingolipid Concentrations
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 8:2, s. e1002490-
  • Tidskriftsartikel (refereegranskat)abstract
    • Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88 x 10(-204)) and 10 loci for sphingolipids (smallest P-value = 3.10 x 10(-57)). After a correction for multiple comparisons (P-value, 2.2 x 10(-9)), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.
  •  
3.
  • Hicks, Andrew A., et al. (författare)
  • Genetic determinants of circulating sphingolipid concentrations in European populations
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:10, s. e1000672-
  • Tidskriftsartikel (refereegranskat)abstract
    • Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic β-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08×10−66. The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1–3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10−4 or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases.
  •  
4.
  • Johansson, Åsa, et al. (författare)
  • Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis
  • 2009
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:2, s. 373-380
  • Tidskriftsartikel (refereegranskat)abstract
    • Genes for height has gained interest for decades, but only recently have candidate genes started to be identified. We have performed linkage analysis and genome-wide association for height in approximately 4,000 individuals from five European populations. A total of 5 chromosomal regions showed suggestive linkage and in one of these regions, two SNPs (rs849140 and rs1635852) were associated with height (nominal p=7.0 x 10(-8) and p=9.6 x 10(-7) respectively). In total, five SNPs across the genome showed an association with height that reached the threshold of genome-wide significance (nominal p<1.6 x 10(-7)). The association with height was replicated for two SNPs (rs1635852 and rs849140) using three independent studies (N=31,077, N=1,268 and N=5,746) with overall meta p-values of 9.4x10(-10) and 5.3x10(-8). These SNPs are located in the JAZF1 gene, which has recently been associated with type II diabetes, prostate and endometrial cancer. JAZF1 is a transcriptional repressor of NR2C2, which results in low IGF1 serum concentrations, perinatal and early postnatal hypoglycaemia and growth retardation when knocked-out in mice. Both the linkage and association analyses independently identified the JAZF1 region affecting human height. We have demonstrated, through replication in additional independent populations, the consistency of the effect of the JAZF1 SNPs on height. Since this gene also has a key function in the metabolism of growth, JAZF1 represents one of the strongest candidates influencing human height so far identified.
  •  
5.
  • Johansson, Åsa, et al. (författare)
  • Linkage and genome-wide association analysis of obesity-related phenotypes : association of weight with the MGAT1 gene
  • 2010
  • Ingår i: Obesity. - : Wiley. - 1930-7381 .- 1930-739X. ; 18:4, s. 803-808
  • Tidskriftsartikel (refereegranskat)abstract
    • As major risk-factors for diabetes and cardiovascular diseases, the genetic contribution to obesity-related traits has been of interest for decades. Recently, a limited number of common genetic variants, which have replicated in different populations, have been identified. One approach to increase the statistical power in genetic mapping studies is to focus on populations with increased levels of linkage disequilibrium (LD) and reduced genetic diversity. We have performed joint linkage and genome-wide association analyses for weight and BMI in 3,448 (linkage) and 3,925 (association) partly overlapping healthy individuals from five European populations. A total of four chromosomal regions (two for weight and two for BMI) showed suggestive linkage (lod >2.69) either in one of the populations or in the joint data. At the genome-wide level (nominal P < 1.6 × 10−7, Bonferroni-adjusted P < 0.05) one single-nucleotide polymorphism (SNP) (rs12517906) (nominal P = 7.3 × 10−8) was associated with weight, whereas none with BMI. The SNP associated with weight is located close to MGAT1. The monoacylglycerol acyltransferase (MGAT) enzyme family is known to be involved in dietary fat absorption. There was no overlap between the linkage regions and the associated SNPs. Our results show that genetic effects influencing weight and BMI are shared across diverse European populations, even though some of these populations have experienced recent population bottlenecks and/or been affected by genetic drift. The analysis enabled us to identify a new candidate gene, MGAT1, associated with weight in women.
  •  
6.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
7.
  • Marroni, Fabio, et al. (författare)
  • A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations : the EUROSPAN project
  • 2009
  • Ingår i: Circulation: Cardiovascular Genetics. - 1942-3268. ; 2:4, s. 322-328
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: We set out to identify common genetic determinants of the length of the RR and QT intervals in 2325 individuals from isolated European populations. METHODS AND RESULTS: We analyzed the heart rate at rest, measured as the RR interval, and the length of the corrected QT interval for association with 318 237 single-nucleotide polymorphisms. The RR interval was associated with common variants within GPR133, a G-protein-coupled receptor (rs885389, P=3.9 x 10(-8)). The QT interval was associated with the earlier reported NOS1AP gene (rs2880058, P=2.00 x 10(-10)) and with a region on chromosome 13 (rs2478333, P=4.34 x 10(-8)), which is 100 kb from the closest known transcript LOC730174 and has previously not been associated with the length of the QT interval. CONCLUSIONS: Our results suggested an association between the RR interval and GPR133 and confirmed an association between the QT interval and NOS1AP.
  •  
8.
  • Ntalla, Ioanna, et al. (författare)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
9.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
10.
  • Pattaro, Cristian, et al. (författare)
  • Genome-wide linkage analysis of serum creatinine in three isolated European populations
  • 2009
  • Ingår i: Kidney International. - : Elsevier BV. - 0085-2538 .- 1523-1755. ; 76:3, s. 297-306
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increasing evidence for a role of genetic predisposition in the etiology of kidney disease, but linkage scans have been poorly replicated. Here we performed a genome-wide linkage analysis of serum creatinine on 2859 individuals from isolated villages in South Tyrol (Italy), Rucphen (The Netherlands) and Vis Island (Croatia), populations that have been stable and permanently resident in their region. Linkage of serum creatinine levels to loci on chromosomes 7p14, 9p21, 11p15, 15q15-21, 16p13, and 18p11 was successfully replicated in at least one discovery population or in the pooled analysis. A novel locus was found on chromosome 10p11. Linkage to chromosome 22q13, independent of diabetes and hypertension, was detected over a region containing the non-muscle myosin heavy chain type II isoform A (MYH9) gene (LOD score=3.52). In non-diabetic individuals, serum creatinine was associated with this gene in two of the three populations and in meta-analysis (SNP rs11089788, P-value=0.0089). In populations sharing a homogeneous environment and genetic background, heritability of serum creatinine was higher than in outbred populations, with consequent detection of a larger number of loci than reported before. Our finding of a replicated association of serum creatinine with the MYH9 gene, recently linked to pathological renal conditions in African Americans, suggests that this gene may also influence kidney function in healthy Europeans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (15)
Typ av innehåll
refereegranskat (15)
Författare/redaktör
Pattaro, Cristian (15)
Campbell, Harry (12)
Rudan, Igor (12)
Pramstaller, Peter P ... (12)
Wilson, James F. (12)
visa fler...
van Duijn, Cornelia ... (11)
Gyllensten, Ulf (11)
Meitinger, Thomas (11)
Hayward, Caroline (11)
Vitart, Veronique (10)
Pichler, Irene (10)
Oostra, Ben A. (9)
Wright, Alan F. (8)
Polasek, Ozren (8)
Aulchenko, Yurii S (8)
Marroni, Fabio (8)
Johansson, Åsa (7)
Wild, Sarah H (7)
Uitterlinden, André ... (6)
Salomaa, Veikko (5)
Perola, Markus (5)
Rotter, Jerome I. (5)
Gieger, Christian (5)
Jonasson, Inger (5)
Loos, Ruth J F (5)
Hofman, Albert (5)
Kolcic, Ivana (5)
Psaty, Bruce M (5)
Boerwinkle, Eric (5)
Hastie, Nick (5)
Lind, Lars (4)
Soranzo, Nicole (4)
Magnusson, Patrik K ... (4)
Boehnke, Michael (4)
Mohlke, Karen L (4)
Thorleifsson, Gudmar (4)
Stefansson, Kari (4)
Mangino, Massimo (4)
Willemsen, Gonneke (4)
Wichmann, H. Erich (4)
Martin, Nicholas G. (4)
Kaprio, Jaakko (4)
Montgomery, Grant W. (4)
Rivadeneira, Fernand ... (4)
Harris, Tamara B (4)
Elliott, Paul (4)
Gudnason, Vilmundur (4)
Penninx, Brenda W J ... (4)
Hottenga, Jouke-Jan (4)
visa färre...
Lärosäte
Uppsala universitet (15)
Karolinska Institutet (4)
Lunds universitet (3)
Umeå universitet (1)
Handelshögskolan i Stockholm (1)
Högskolan Dalarna (1)
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy