SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pearson Ewan) "

Sökning: WFRF:(Pearson Ewan)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allesøe, Rosa Lundbye, et al. (författare)
  • Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
  • 2023
  • Ingår i: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 41:3, s. 399-408
  • Tidskriftsartikel (refereegranskat)abstract
    • The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
  •  
2.
  • Atabaki-Pasdar, Naeimeh, et al. (författare)
  • Inferring causal pathways between metabolic processes and liver fat accumulation: an IMI DIRECT study
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) often co-occur. Defining causal pathways underlying this relationship may help optimize the prevention and treatment of both diseases. Thus, we assessed the strength and magnitude of the putative causal pathways linking dysglycemia and fatty liver, using a combination of causal inference methods.Measures of glycemia, insulin dynamics, magnetic resonance imaging (MRI)-derived abdominal and liver fat content, serological biomarkers, lifestyle, and anthropometry were obtained in participants from the IMI DIRECT cohorts (n=795 with new onset T2D and 2234 individuals free from diabetes). UK Biobank (n=3641) was used for modelling and replication purposes. Bayesian networks were employed to infer causal pathways, with causal validation using two-sample Mendelian randomization.Bayesian networks fitted to IMI DIRECT data identified higher basal insulin secretion rate (BasalISR) and MRI-derived excess visceral fat (VAT) accumulation as the features of dysmetabolism most likely to cause liver fat accumulation; the unconditional probability of fatty liver (>5%) increased significantly when conditioning on high levels of BasalISR and VAT (by 23%, 32% respectively; 40% for both). Analyses in UK Biobank yielded comparable results. MR confirmed most causal pathways predicted by the Bayesian networks.Here, BasalISR had the highest causal effect on fatty liver predisposition, providing mechanistic evidence underpinning the established association of NAFLD and T2D. BasalISR may represent a pragmatic biomarker for NAFLD prediction in clinical practice.Competing Interest StatementHR is an employee and shareholder of Sanofi. MIM: The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. MIM has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. As of June 2019, MIM is an employee of Genentech, and a holder of Roche stock. AM is a consultant for Lilly and has received research grants from several diabetes drug companies. PWF has received research grants from numerous diabetes drug companies and fess as consultant from Novo Nordisk, Lilly, and Zoe Global Ltd. He is currently the Scientific Director in Patient Care at the Novo Nordisk Foundation. Other authors declare non competing interests.Funding StatementThe work leading to this publication has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement 115317 (DIRECT) resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. NAP is supported in part by Henning och Johan Throne-Holsts Foundation, Hans Werthen Foundation, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. HPM is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AGJ is supported by an NIHR Clinician Scientist award (17/0005624). RK is funded by the Novo Nordisk Foundation (NNF18OC0031650) as part of a postdoctoral fellowship, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AK, PM, HF, JF and GNG are supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. TJM is funded by an NIHR clinical senior lecturer fellowship. S.Bru acknowledges support from the Novo Nordisk Foundation (grants NNF17OC0027594 and NNF14CC0001). ATH is a Wellcome Trust Senior Investigator and is also supported by the NIHR Exeter Clinical Research Facility. JMS acknowledges support from Science for Life Laboratory (Plasma Profiling Facility), Knut and Alice Wallenberg Foundation (Human Protein Atlas) and Erling-Persson Foundation (KTH Centre for Precision Medicine). MIM is supported by the following grants; Wellcome (090532, 098381, 106130, 203141, 212259); NIH (U01-DK105535). PWF is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Approval for the study protocol was obtained from each of the regional research ethics review boards separately (Lund, Sweden: 20130312105459927, Copenhagen, Denmark: H-1-2012-166 and H-1-2012-100, Amsterdam, Netherlands: NL40099.029.12, Newcastle, Dundee and Exeter, UK: 12/NE/0132), and all participants provided written informed consent at enrolment. The research conformed to the ethical principles for medical research involving human participants outlined in the Declaration of Helsinki.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAuthors agree to make data and materials supporting the results or analyses presented in their paper available upon reasonable request
  •  
3.
  • Atabaki-Pasdar, Naeimeh, et al. (författare)
  • Statistical power considerations in genotype-based recall randomized controlled trials
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Randomized controlled trials (RCT) are often underpowered for validating gene-treatment interactions. Using published data from the Diabetes Prevention Program (DPP), we examined power in conventional and genotype-based recall (GBR) trials. We calculated sample size and statistical power for gene-metformin interactions (vs. placebo) using incidence rates, gene-drug interaction effect estimates and allele frequencies reported in the DPP for the rs8065082 SLC47A1 variant, a metformin transported encoding locus. We then calculated statistical power for interactions between genetic risk scores (GRS), metformin treatment and intensive lifestyle intervention (ILI) given a range of sampling frames, clinical trial sample sizes, interaction effect estimates, and allele frequencies; outcomes were type 2 diabetes incidence (time-to-event) and change in small LDL particles (continuous outcome). Thereafter, we compared two recruitment frameworks: GBR (participants recruited from the extremes of a GRS distribution) and conventional sampling (participants recruited without explicit emphasis on genetic characteristics). We further examined the influence of outcome measurement error on statistical power. Under most simulated scenarios, GBR trials have substantially higher power to observe gene-drug and gene-lifestyle interactions than same-sized conventional RCTs. GBR trials are becoming popular for validation of gene-treatment interactions; our analyses illustrate the strengths and weaknesses of this design.
  •  
4.
  • Beaumont, Robin N, et al. (författare)
  • Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth.
  • 2023
  • Ingår i: Nature genetics. - 1546-1718 .- 1061-4036. ; 55:11, s. 1807-19
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth.
  •  
5.
  • Bizzotto, Roberto, et al. (författare)
  • Processes Underlying Glycemic Deterioration in Type 2 Diabetes : An IMI DIRECT Study
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:2, s. 511-518
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: A total of 732 recently diagnosed patients with T2D from the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) study were extensively phenotyped over 3 years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS), and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. RESULTS: Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS and increasing CLIm; visceral or liver fat, HDL-cholesterol, and triglycerides had further independent, though weaker, roles (R2 = 0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from area under the receiver operating characteristic = 0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS, and CLIm was relatively stable (odds ratios 0.07-0.09). T2D polygenic risk score and baseline pancreatic fat, glucagon-like peptide 1, glucagon, diet, and physical activity did not show an independent role. CONCLUSIONS: Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of patients with T2D in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression.
  •  
6.
  • Chung, Wendy K., et al. (författare)
  • Precision medicine in diabetes : a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  • 2020
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 63:9, s. 1671-1693
  • Tidskriftsartikel (refereegranskat)abstract
    • The convergence of advances in medical science, human biology, data science and technology has enabled the generation of new insights into the phenotype known as ‘diabetes’. Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment) and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e. monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realise its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
  •  
7.
  • Chung, Wendy K., et al. (författare)
  • Precision Medicine in Diabetes : A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:7, s. 1617-1635
  • Forskningsöversikt (refereegranskat)abstract
    • The convergence of advances in medical science, human biology, data science, and technology has enabled the generation of new insights into the phenotype known as "diabetes." Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence, and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field, and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment), and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e., monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realize its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
  •  
8.
  • Coral, Daniel E, et al. (författare)
  • A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes
  • 2023
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 5:2, s. 237-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity and type 2 diabetes are causally related, yet there is considerable heterogeneity in the consequences of both conditions and the mechanisms of action are poorly defined. Here we show a genetic-driven approach defining two obesity profiles that convey highly concordant and discordant diabetogenic effects. We annotate and then compare association signals for these profiles across clinical and molecular phenotypic layers. Key differences are identified in a wide range of traits, including cardiovascular mortality, fat distribution, liver metabolism, blood pressure, specific lipid fractions and blood levels of proteins involved in extracellular matrix remodelling. We find marginal differences in abundance of Bacteroidetes and Firmicutes bacteria in the gut. Instrumental analyses reveal prominent causal roles for waist-to-hip ratio, blood pressure and cholesterol content of high-density lipoprotein particles in the development of diabetes in obesity. We prioritize 17 genes from the discordant signature that convey protection against type 2 diabetes in obesity, which may represent logical targets for precision medicine approaches.
  •  
9.
  • Corbin, Laura J., et al. (författare)
  • Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed phenotyping is required to deepen our understanding of the biological mechanisms behind genetic associations. In addition, the impact of potentially modifiable risk factors on disease requires analytical frameworks that allow causal inference. Here, we discuss the characteristics of Recall-by-Genotype (RbG) as a study design aimed at addressing both these needs. We describe two broad scenarios for the application of RbG: studies using single variants and those using multiple variants. We consider the efficacy and practicality of the RbG approach, provide a catalogue of UK-based resources for such studies and present an online RbG study planner.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52
Typ av publikation
tidskriftsartikel (47)
forskningsöversikt (4)
annan publikation (1)
Typ av innehåll
refereegranskat (48)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Franks, Paul W. (28)
McCarthy, Mark I (18)
Walker, Mark (15)
Pearson, Ewan (15)
Pedersen, Oluf (14)
Hansen, Torben (14)
visa fler...
Mahajan, Anubha (14)
Pavo, Imre (13)
Ruetten, Hartmut (13)
Schwenk, Jochen M. (12)
Vinuela, Ana (12)
Hattersley, Andrew T (12)
Mari, Andrea (11)
Giordano, Giuseppe N ... (10)
Laakso, Markku (10)
De Masi, Federico (10)
Adamski, Jerzy (9)
Rutters, Femke (9)
Hansen, Tue H (9)
McDonald, Timothy J (9)
Groop, Leif (8)
Koivula, Robert W (8)
‘t Hart, Leen M. (8)
Kokkola, Tarja (8)
Heggie, Alison (8)
Forgie, Ian (8)
Dermitzakis, Emmanou ... (8)
Brunak, Søren (8)
Palmer, Colin N. A. (8)
Ridderstråle, Martin (7)
Koivula, Robert (7)
Vestergaard, Henrik (7)
Franks, Paul (6)
Ahlqvist, Emma (6)
Sharma, Sapna (6)
Hong, Mun-Gwan (6)
Kaye, Jane (6)
Tura, Andrea (6)
Cederberg, Henna (6)
Fitipaldi, Hugo (5)
Ali, Ashfaq (5)
Kurbasic, Azra (5)
Bell, Jimmy D. (5)
Thomas, E. Louise (5)
Frost, Gary (5)
Banasik, Karina (5)
Elders, Petra (5)
Teare, Harriet (5)
Morris, Andrew D (5)
Brown, Andrew (5)
visa färre...
Lärosäte
Lunds universitet (41)
Kungliga Tekniska Högskolan (14)
Umeå universitet (13)
Uppsala universitet (7)
Mittuniversitetet (2)
Göteborgs universitet (1)
visa fler...
Stockholms universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (52)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (48)
Naturvetenskap (3)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy