SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pejovic Tanja) "

Sökning: WFRF:(Pejovic Tanja)

  • Resultat 1-10 av 12
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bojesen, Stig E., et al. (författare)
  • Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer
  • 2013
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 45:4, s. 371-384
  • Tidskriftsartikel (refereegranskat)abstract
    • TERT-locus SNPs and leukocyte telomere measures are reportedly associated with risks of multiple cancers. Using the Illumina custom genotyping array iCOG, we analyzed similar to 480 SNPs at the TERT locus in breast (n = 103,991), ovarian (n = 39,774) and BRCA1 mutation carrier (n = 11,705) cancer cases and controls. Leukocyte telomere measurements were also available for 53,724 participants. Most associations cluster into three independent peaks. The minor allele at the peak 1 SNP rs2736108 associates with longer telomeres (P = 5.8 x 10(-7)), lower risks for estrogen receptor (ER)-negative (P = 1.0 x 10(-8)) and BRCA1 mutation carrier (P = 1.1 x 10(-5)) breast cancers and altered promoter assay signal. The minor allele at the peak 2 SNP rs7705526 associates with longer telomeres (P = 2.3 x 10(-14)), higher risk of low-malignant-potential ovarian cancer (P = 1.3 x 10(-15)) and greater promoter activity. The minor alleles at the peak 3 SNPs rs10069690 and rs2242652 increase ER-negative (P = 1.2 x 10(-12)) and BRCA1 mutation carrier (P = 1.6 x 10-14) breast and invasive ovarian (P = 1.3 x 10(-11)) cancer risks but not via altered telomere length. The cancer risk alleles of rs2242652 and rs10069690, respectively, increase silencing and generate a truncated TERT splice variant.
  •  
2.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • Ingår i: Gynecologic Oncology. - Academic Press. - 0090-8258. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
3.
  • Jiang, Xia, et al. (författare)
  • Shared heritability and functional enrichment across six solid cancers
  • 2019
  • Ingår i: Nature Communications. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (rg = 0.57, p = 4.6 × 10−8), breast and ovarian cancer (rg = 0.24, p = 7 × 10−5), breast and lung cancer (rg = 0.18, p =1.5 × 10−6) and breast and colorectal cancer (rg = 0.15, p = 1.1 × 10−4). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis. © 2019, The Author(s).
4.
  • Koul, Anjila, et al. (författare)
  • Identification of TP53 gene mutations in uterine corpus cancer with short follow-up
  • 1997
  • Ingår i: Gynecologic Oncology. - Academic Press. - 1095-6859. ; 67:3, s. 295-302
  • Tidskriftsartikel (refereegranskat)abstract
    • The involvement of the TP53 tumor suppressor gene in uterine corpus cancer was investigated by single-stranded conformation polymorphism and sequence analysis of its exons 4 to 10. Mutations were found in 12 (18.5%) of 65 cases. Ten of these 12 were single-base substitutions (8 missense and 2 nonsense mutations), whereas 2 were frame-shifting mutations. TP53 gene mutations correlated significantly with advanced surgical stage of disease (P = 0.006) and unfavorable tumor histology types (P = 0.003), whereas the association to myometrial wall invasion did not reach statistical significance (P = 0.054). TP53 gene mutations also correlated significantly with allelic loss at TP53 locus (P = 0.024), absence of estrogen (P = 0.045) and progesterone receptors (P = 0.001), DNA nondiploidy (P = 0.002), and high S-phase fraction values (P = 0.002). Our results suggest that inactivation of the TP53 checkpoint function is associated with disease transition into a stage of rapid progression and spread.
  •  
5.
  • Kuchenbaecker, Karoline B., et al. (författare)
  • Identification of six new susceptibility loci for invasive epithelial ovarian cancer
  • 2015
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036. ; 47:2, s. 164-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P less than 5 x 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
  •  
6.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
7.
  • Lu, Yingchang, et al. (författare)
  • A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
  • 2018
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 78:18, s. 5419-5430
  • Tidskriftsartikel (refereegranskat)abstract
    • .<h2>Abstract</h2>Large-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in noncoding regions, and causal genes underlying these associations remain largely unknown. Here, we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P &lt; 2.2 × 10−6, we identified 35 genes, including FZD4 at 11q14.2 (Z = 5.08, P = 3.83 × 10−7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and three genes remained (P &lt; 1.47 × 10−3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis.Significance: Transcriptomic analysis of a large cohort confirms earlier GWAS loci and reveals FZD4 as a novel locus associated with EOC risk. Cancer Res; 78(18); 5419–30. ©2018 AACR.
  •  
8.
  • Meeks, Huong D., et al. (författare)
  • BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers
  • 2016
  • Ingår i: Journal of the National Cancer Institute. - Oxford University Press. - 0027-8874. ; 108:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The K3326X variant in BRCA2 (BRCA2∗c.9976A>T p.Lys3326∗rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormonerelated cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76637 cancer case patients and 83796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9×10-6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8×10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4×10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1×10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations.
  •  
9.
  • Pejovic, Tanja, et al. (författare)
  • Chromosome aberrations in 35 primary ovarian carcinomas
  • 1992
  • Ingår i: Genes, Chromosomes and Cancer. - John Wiley & Sons. - 1045-2257. ; 4:1, s. 58-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytogenetic analysis was performed on short-term cultures of primary ovarian carcinomas from 62 patients. Cytogenetic analysis was successful in 59 cases. Clonal chromosome aberrations were detected in 35 tumors. Only numerical changes or a single structural change were found in five carcinomas: trisomy 12 was the sole anomaly in two tumors, one tumor had the karyotype 50,XX, + 5, + 7, + 12, + 14, a fourth tumor had a balanced t(1;5), and the fifth tumor had an unbalanced t(8;15). The fact that four of these five carcinomas were well differentiated suggests that simple karyotypic changes are generally characteristic of these less aggressive ovarian tumors. The majority of the cytogenetically abnormal tumors (n = 30) had complex karyotypes, with both numerical and structural aberrations and often hypodiploid or near-triploid stemlines. The numerical imbalances (comparison with the nearest euploid number) were mostly losses, in order of decreasing frequency -17, -22, -13, -8, -X, and -14. The structural aberrations were mostly deletions and unbalanced translocations. Recurrent loss of genetic material affected chromosome arms 1p, 3p, 6q, and 11p. The breakpoints of the clonal structural abnormalities clustered to several chromosome bands and segments: 19p13, 11p13-15, 1q21-23, 1p36, 19q13, 3p12-13, and 6q21-23. The most consistent change (16 tumors) was a 19p + marker, and in 12 of the tumors the 19p + markers looked alike.
  •  
10.
  • Phelan, Catherine M, et al. (författare)
  • Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.
  • 2017
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 49:5, s. 680-691
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy