SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pejovic Tanja) "

Sökning: WFRF:(Pejovic Tanja)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Bojesen, Stig E., et al. (författare)
  • Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer
  • 2013
  • Ingår i: Nature Genetics. - New york : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 45:4, s. 371-384
  • Tidskriftsartikel (refereegranskat)abstract
    • TERT-locus SNPs and leukocyte telomere measures are reportedly associated with risks of multiple cancers. Using the Illumina custom genotyping array iCOG, we analyzed similar to 480 SNPs at the TERT locus in breast (n = 103,991), ovarian (n = 39,774) and BRCA1 mutation carrier (n = 11,705) cancer cases and controls. Leukocyte telomere measurements were also available for 53,724 participants. Most associations cluster into three independent peaks. The minor allele at the peak 1 SNP rs2736108 associates with longer telomeres (P = 5.8 x 10(-7)), lower risks for estrogen receptor (ER)-negative (P = 1.0 x 10(-8)) and BRCA1 mutation carrier (P = 1.1 x 10(-5)) breast cancers and altered promoter assay signal. The minor allele at the peak 2 SNP rs7705526 associates with longer telomeres (P = 2.3 x 10(-14)), higher risk of low-malignant-potential ovarian cancer (P = 1.3 x 10(-15)) and greater promoter activity. The minor alleles at the peak 3 SNPs rs10069690 and rs2242652 increase ER-negative (P = 1.2 x 10(-12)) and BRCA1 mutation carrier (P = 1.6 x 10-14) breast and invasive ovarian (P = 1.3 x 10(-11)) cancer risks but not via altered telomere length. The cancer risk alleles of rs2242652 and rs10069690, respectively, increase silencing and generate a truncated TERT splice variant.
  •  
3.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • Ingår i: Gynecologic Oncology. - : Academic Press. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
4.
  • Kar, Siddhartha P., et al. (författare)
  • Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types
  • 2016
  • Ingår i: ; 6:9, s. 1052-1067
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10 -8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. SIGNIFICANCE: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. (C) 2016 AACR.
  •  
5.
  •  
6.
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Lu, Yingchang, et al. (författare)
  • A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
  • 2018
  • Ingår i: ; 78:18, s. 5419-5430
  • Tidskriftsartikel (refereegranskat)abstract
    • .AbstractLarge-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in noncoding regions, and causal genes underlying these associations remain largely unknown. Here, we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P < 2.2 × 10−6, we identified 35 genes, including FZD4 at 11q14.2 (Z = 5.08, P = 3.83 × 10−7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and three genes remained (P < 1.47 × 10−3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis.Significance: Transcriptomic analysis of a large cohort confirms earlier GWAS loci and reveals FZD4 as a novel locus associated with EOC risk. Cancer Res; 78(18); 5419–30. ©2018 AACR.
  •  
8.
  • Meeks, Huong D., et al. (författare)
  • BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 108:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The K3326X variant in BRCA2 (BRCA2∗c.9976A>T p.Lys3326∗rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormonerelated cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76637 cancer case patients and 83796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9×10-6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8×10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4×10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1×10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations.
  •  
9.
  •  
10.
  • Yang, Yaohua, et al. (författare)
  • Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk
  • 2019
  • Ingår i: ; 79:3, s. 505-517
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P < 7.94 x 10(-7). Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. Significance: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy