SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Anders) ;pers:(Kristensen Anders)"

Sökning: WFRF:(Persson Anders) > Kristensen Anders

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • McGinn, Steven, et al. (författare)
  • New Technologies for DNA analysis-A review of the READNA Project.
  • 2016
  • Ingår i: New Biotechnology. - : Elsevier BV. - 1876-4347 .- 1871-6784.
  • Forskningsöversikt (refereegranskat)abstract
    • The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 4 1/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
  •  
2.
  • Persson, Fredrik, 1979, et al. (författare)
  • Local conformation of confined DNA studied using emission polarization anisotropy
  • 2010
  • Ingår i: Biophysical Society 54th Annual Meeting.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • When confined in nanochannels with dimensions smaller than the DNA radius of gyration, DNA will extend along the channel. We investigate long DNA confined in nanochannels, using fluorescence microscopy and intercalated dyes. Studies of the dynamics and statics of DNA in such nanoscale confinements as a function of e.g. degree of confinement and ionic strength have yielded new insights into the physical properties of DNA with relevance for applications in genomics as well as fundamental understanding of DNA packaging in vivo. Our work extends the field by not only studying the location of the emitting dyes along a confined DNA molecule but also monitoring the polarization of the emitted light. By measuring the emission polarized parallel and perpendicular to the extension axis of the stretched DNA, information on the local spatial distribution of the DNA backbone can be obtained. Comparing polarizations in two directions for DNA confined in channels of effective diameters of 85 nm and 170 nm reveals a striking difference. Whereas the DNA in the larger channels shows an isotropic polarization of the emitted light, the light is to a large extent polarized perpendicular to the elongation of the DNA in the smaller channels. We expect this technique to have a large impact on the studies of changes in DNA conformation induced by protein binding or during DNA compactation as well as in fundamental polymer physics studies of DNA in confined environments, for example in bacterial spores and viruses.
  •  
3.
  • Persson, Fredrik, 1979, et al. (författare)
  • Local conformation of confined DNA studied using emission polarization anisotropy
  • 2010
  • Ingår i: NanoBioTech-Montreux 2009.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In nanochannels with dimensions smaller than the DNA radius of gyration, DNA will extend along the channel. We investigate long DNA confined in nanochannels using fluorescence microscopy and intercalated dyes. Studies of the dynamics and statics of the DNA extension or position in such nanoscale confinements as a function of e.g. DNA contour length, degree and shape of confinement as well as ionic strength have yielded new insights in the physical properties of DNA with relevance for applications in genomics as well as fundamental understanding of DNA packaging in vivo. Our work extends the field by not only studying the location of the emitting dyes along a confined DNA molecule but also monitoring the polarization of the emitted light. We use intercalating dyes (YOYO-1) whose emission is polarized perpendicular to the DNA extension axis, and by measuring the emission polarized parallel and perpendicular to the extension axis of the stretched DNA, information on the local spatial distribution of the DNA backbone can be obtained. The results obtained are analogous to linear dichroism (LD) but on a single-molecule level, and obtained in a highly parallel fashion. We will discuss results in shallow (60 nm) and deep (180 nm) channels and describe an example of how the technique can be used to investigate non-uniform stretching of DNA on the single molecule level. Comparing polarizations in two directions for DNA confined in channels of effective diameters of 85 nm and 170 nm reveals a striking difference. Whereas the DNA in the larger channels shows an isotropic polarization of the emitted light, the light is to a large extent polarized perpendicular to the elongation of the DNA in the smaller channels. The ratio of the polarization parallel and perpendicular to the elongation direction, I|| / I⊥, is a measure of the relative local orientation of the DNA backbone. We believe that this technique will have a large impact on the studies of changes in DNA conformation induced by protein binding or during DNA compactation as well as in fundamental polymer physics studies of DNA in confined environments, for example in bacterial spores and viruses.
  •  
4.
  •  
5.
  • Persson, Fredrik, et al. (författare)
  • Polarization anisotropy of DNA in nanochannels
  • 2008
  • Ingår i: ; , s. 668-670
  • Konferensbidrag (refereegranskat)abstract
    • The local alignment of DNA stretched in nanofluidic channels is measured using polarization sensitive detection. With increased degree of stretching the polarization anisotropy increases both in the deGennes and the Odijk regime. The technique is expected to find use in studies of, for example, local conformational changes in polymer physics in confined spaces, studies of protein-DNA interactions and compactation of DNA.
  •  
6.
  •  
7.
  • Westerlund, Fredrik, 1978, et al. (författare)
  • Fluorescence Enhancement From Single DNA Molecules Confined In Si/SiO2 Nanochannels
  • 2010
  • Ingår i: Biophysical Society, 54th Annual Meeting.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • A large challenge in biophysics when studying single molecules using fluorescence microscopy is to obtain a signal that is clearly detectable above the background noise. Ways to improve or optimize the fluorescence signal is therefore of great interest. We here study DNA extended in 320 nm deep funnel-shaped SiO2 nanochannels with a width ranging from 40nm to 600nm. The DNA is stained with a fluorescent dye (YOYO-1) and we show that the total emission from the DNA varies significantly with the dimensions of the channels (Figure) and has a peak intensity at half the wavelength of the emitted light. Measurements at varying salt concentrations, where the same confinement leads to different extension of the DNA, confirm that it is solely the geometry of the channel that governs the enhancement effect, ruling out alternative explanations, such as self-quenching. By using polarizers on the emission side we can investigate the light polarized parallel and perpendicular to the channel separately and we see that they show vastly different behavior with the peak in emission only detected in the light polarized parallel to the channels. We will discuss how our data may be explained by cavity-resonance effects when the lateral dimensions of the channels coincide with half the wavelength of the emitted light. Our results suggest that it is possible to fine-tune the size and shape of the nanochannels to maximize the number of photons collected from the molecule under study, for example when studying DNA interacting with single DNA-binding proteins where maximizing the photon budget is paramount.
  •  
8.
  • Westerlund, Fredrik, 1978, et al. (författare)
  • Fluorescence Enhancement of Single DNA Molecules Confined in Si/SiO2 Nanochannels
  • 2010
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 10:16, s. 2049-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate that the detected emission intensity from YOYO- labeled DNA molecules confined in 180 nm deep Si/SiO2 nano- funnels changes significantly and not monotonically with the width of the funnel. This effect may be of importance for quantitative fluorescence microscopy and for experiments with a tight photon budget.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy