SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Hans) ;pers:(Abrahamsson Maria)"

Sökning: WFRF:(Persson Hans) > Abrahamsson Maria

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, Maria, et al. (författare)
  • A 3.0 mu s room temperature excited state lifetime of a bistridentate Ru-II-polypyridine complex for rod-like molecular arrays
  • 2006
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 128:39, s. 12616-12617
  • Tidskriftsartikel (refereegranskat)abstract
    • A bistridentate RuII-polypyridine complex [Ru(bqp)2]2+ (bqp = 2,6-bis(8'-quinolinyl)pyridine) has been prepared, which has a coordination geometry much closer to a perfect octahedron than the typical Ru(terpyridine)2-type complex. Thus, the complex displays a 3.0 mus lifetime of the lowest excited metal-to-ligand charge transfer (3MLCT) state at room temperature. This is, to the best of our knowledge, the longest MLCT state lifetime reported for a RuII-polypyridyl complex at room temperature. The structure allows for the future construction of rod-like, isomer-free molecular arrays by substitution of donor and acceptor moieties on the central pyridine units. This makes it a promising photosensitizer for applications in molecular devices for artificial photosynthesis and molecular electronics.
  •  
2.
  • Abrahamsson, Maria, et al. (författare)
  • Bistridentate Ruthenium(II)polypyridyl-Type Complexes with Microsecond 3MLCT State Lifetimes : Sensitizers for Rod-Like Molecular Arrays
  • 2008
  • Ingår i: Journal of the American Chemical Society. - : ACS. - 0002-7863 .- 1520-5126. ; 130:46, s. 15533-15542
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of bistridentate ruthenium(II) polypyridyl-type complexes based on the novel 2,6-di(quinolin-8-yl)pyridine (dqp) ligand have been synthesized and their photophysical properties have been studied. The complexes are amenable to substitution in the 4-position of the central pyridine with conserved quasi-C2v symmetry, which allows for extension to isomer-free, rod-like molecular arrays for vectorial control of electron and energy transfer. DFT calculations performed on the parent [Ru(dqp) 2](2+) complex (1) predicted a more octahedral structure than in the typical bistridentate complex [Ru(tpy)2](2+) (tpy is 2,2':6',2"-terpyridine) thanks to the larger ligand bite angle, which was confirmed by X-ray crystallography. A strong visible absorption band, with a maximum at 491 nm was assigned to a metal-to-ligand charge transfer (MLCT) transition, based on time-dependent DFT calculations. 1 shows room temperature emission (Phi = 0.02) from its lowest excited ((3)MLCT) state that has a very long lifetime (tau = 3 micros). The long lifetime is due to a stronger ligand field, because of the more octahedral structure, which makes the often dominant activated decay via short-lived metal-centered states insignificant also at elevated temperatures. A series of complexes based on dqp with electron donating and/or accepting substituents in the 4-position of the pyridine was prepared and the properties were compared to those of 1. An unprecedented (3)MLCT state lifetime of 5.5 micros was demonstrated for the homoleptic complex based on dqpCO2Et. The favorable photosensitizer properties of 1, such as a high extinction coefficient, high excited-state energy and long lifetime, and tunable redox potentials, are maintained upon substitution. In addition, the parent complex 1 is shown to be remarkably photostable and displays a high reactivity in light-induced electron and energy transfer reactions with typical energy and electron acceptors and donors: methylviologen, tetrathiofulvalene, and 9,10-diphenylanthracene. This new class of complexes constitutes a promising starting point for the construction of linear, rod-like molecular arrays for photosensitized reactions and applications in artificial photosynthesis and molecular electronics.
  •  
3.
  • Abrahamsson, Maria, et al. (författare)
  • Bistridentate Ruthenium(II)polypyridyl-Type Complexes with Microsecond (MLCT)-M-3 State Lifetimes: Sensitizers for Rod-Like Molecular Arrays
  • 2008
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 130:46, s. 15533-15542
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of bistridentate ruthenium(II) polypyridyl-type complexes based on the novel 2,6-di(quinolin-8-yl)pyridine (dqp) ligand have been synthesized and their photophysical properties have been studied. The complexes are amenable to substitution in the 4-position of the central pyridine with conserved quasi-C-2v symmetry, which allows for extension to isomer-free, rod-like molecular arrays for vectorial control of electron and energy transfer. DIFT calculations performed on the parent [Ru(dqp)(2)](2+) complex (1) predicted a more octahedral structure than in the typical bistridentate complex [Ru(tpy)(2)](2+) (tpy is 2,2':6',2 ''-terpyridine) thanks to the larger ligand bite angle, which was confirmed by X-ray crystallography. A strong visible absorption band, with a maximum at 491 nm was assigned to a metal-to-ligand charge transfer (MLCT) transition, based on time-dependent DIFT calculations. 1 shows room temperature emission (Phi = 0.02) from its lowest excited ((MLCT)-M-3) state that has a very long lifetime (tau = 3 mu s). The long lifetime is due to a stronger ligand field, because of the more octahedral structure, which makes the often dominant activated decay via short-lived metal-centered states insignificant also at elevated temperatures. A series of complexes based on dqp with electron donating and/or accepting substituents in the 4-position of the pyridine was prepared and the properties were compared to those of 1. An unprecedented (MLCT)-M-3 state lifetime of 5.5 mu s was demonstrated for the homoleptic complex based on dqpCO(2)Et. The favorable photosensitizer properties of 1, such as a high extinction coefficient, high excited-state energy and long lifetime, and tunable redox potentials, are maintained upon substitution. In addition, the parent complex 1 is shown to be remarkably photostable and displays a high reactivity in light-induced electron and energy transfer reactions with typical energy and electron acceptors and donors: methylviologen, tetrathiofulvalene, and 9,10-diphenylanthracene. This new class of complexes constitutes a promising starting point for the construction of linear, rod-like molecular arrays for photosensitized reactions and applications in artificial photosynthesis and molecular electronics.
  •  
4.
  • Abrahamsson, Maria, et al. (författare)
  • Steric influence on the excited-state lifetimes of ruthenium complexes with bipyridyl-alkanylene-pyridyl ligands.
  • 2008
  • Ingår i: Inorganic Chemistry. - : ACS. - 0020-1669 .- 1520-510X. ; 47:9, s. 3540-3548
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural effect on the metal-to-ligand charge transfer (MLCT) excited-state lifetime has been investigated in bis-tridentate Ru(II)-polypyridyl complexes based on the terpyridine-like ligands [6-(2,2'-bipyridyl)](2-pyridyl)methane (1) and 2-[6-(2,2'-bipyridyl)]-2-(2-pyridyl)propane (2). A homoleptic ([Ru(2)(2)](2+)) and a heteroleptic complex ([Ru(ttpy)(2)](2+)) based on the new ligand 2 have been prepared and their photophysical and structural properties studied experimentally and theoretically and compared to the results for the previously reported [Ru(1)(2)](2+). The excited-state lifetime of the homoleptic Ru-II complex with the isopropylene-bridged ligand 2 was found to be 50 times shorter than that of the corresponding homoleptic Ru-II complex of ligand 1, containing a methylene bridge. A comparison of the ground-state geometries of the two homoleptic complexes shows that steric interactions involving the isopropylene bridges make the coordination to the central Ru-II ion less octahedral in [Ru(2)(2)](2+) than in [Ru(1)(2))(2+). Calculations indicate that the structural differences in these complexes influence their ligand field splittings as well as the relative stabilities of the triplet metal-to-ligand charge transfer ((MLCT)-M-3) and metal-centered ((MC)-M-3) excited states. The large difference in measured excited-state lifetimes for the two homoleptic Ru-II complexes is attributed to a strong influence of steric interactions on the ligand field strength, which in turn affects the activation barriers for thermal conversion from (MLCT)-M-3 states to short-lived (MC)-M-3 states.
  •  
5.
  • Österman, Tomas, et al. (författare)
  • Influence of Triplet State Multidimensionality on Excited State Lifetimes of Bis-tridentate Ru(II) Complexes: A Computational Study
  • 2012
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 116:3, s. 1041-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Calculated triplet excited state potential energy surfaces are presented for a set of three bis-tridentate Ru(II)-polypyridyl dies covering a wide range of room temperature excited state lifetimes: [Ru(II)(tpy)(2)](2+), 250 ps; [Ru(II)(bmp)(2)](2+), 15 ns; and [Ru(II)(dqp)(2)](2+), 3 mu s (tpy is 2,2':6',2 ''-terpyridine, bmp is 6-(2-picoly1)-2,2'-bipyridine, and dqp is 2,6-di(quinolin-8-yl)Fridine). The computational results provide a multidimensional view of the (3)MLCT-(3)MC transition for the investigated complexes. Recently reported results of significantly prolonged (3)MLCT excited state lifetimes of bis-tridentate Ru(II)-complexes, for example [Ru(II)(dqp)(2)](2+), are found to correlate with substantial differences in their triplet excited state multidimensional potential energy surfaces. In addition to identification of low-energy transition paths for (3)MLCT-(3)MC conversion associated with simultaneous elongation of two or more Ru-N bonds for all investigated complexes, the calculations also suggest significant differences in (3)MLCT state volume in the multidimensional reaction coordinate space formed from various combinations of Ru-N bond distance varix:ions. This is proposed to be an important aspect for understanding the large differences in experimentally observed (3)MLCT excited state lifetimes. The results demonstrate the advantage of considering multidimensional potential energy surfaces beyond the Franck-Condon region in order to predict photophysical and photochemical properties of bis-tridentate Ru(II)-polypyridyl dyes and related metal complexes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy