SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Hans) ;pers:(Högberg Hans)"

Sökning: WFRF:(Persson Hans) > Högberg Hans

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Cubarovs, Mihails, et al. (författare)
  • Epitaxial CVD growthof sp2-hybridized boron nitrideusing aluminum nitride as buffer layer
  • 2011
  • Ingår i: Physica Status Solidi. Rapid Research Letters. - : Wiley-VCH Verlagsgesellschaft. - 1862-6254 .- 1862-6270. ; 5:10-11, s. 397-399
  • Tidskriftsartikel (refereegranskat)abstract
    • Epitaxial growth of sp2-hybridized boron nitride (BN) using chemical vapour deposition, with ammonia and triethyl boron as precursors, is enabled on sapphire by introducing an aluminium nitride (AlN) buffer layer. This buffer layer is formed by initial nitridation of the substrate. Epitaxial growth is verified by X-ray diffraction measurements in Bragg–Brentano configuration, pole figure measurements and transmission electron microscopy. The in-plane stretching vibration of sp2-hybridized BN is observed at 1366 cm–1 from Raman spectroscopy. Time-of-flight elastic recoil detection analysis confirms almost perfect stoichiometric BN with low concentration of carbon, oxygen and hydrogen contaminations.
  •  
4.
  • Eklund, Per, et al. (författare)
  • Structural, electrical, and mechanical properties of nc-TiC/a-SiC nanocomposite thin films
  • 2005
  • Ingår i: Journal of Vacuum Science & Technology B. - : American Vacuum Society. - 1071-1023 .- 1520-8567. ; 23:6, s. 2486-2495
  • Tidskriftsartikel (refereegranskat)abstract
    • We have synthesized Ti–Si–C nanocomposite thin films by dc magnetron sputtering from a Ti3SiC2 compound target in an Ar discharge on Si(100), Al2O3(0001), and Al substrates at temperatures from room temperature to 300  °C. Electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy showed that the films consisted of nanocrystalline (nc-) TiC and amorphous (a-) SiC, with the possible presence of a small amount of noncarbidic C. The growth mode was columnar, yielding a nodular film-surface morphology. Mechanically, the films exhibited a remarkable ductile behavior. Their nanoindentation hardness and E-modulus values were 20 and 290  GPa, respectively. The electrical resistivity was 330  µ  cm for optimal Ar pressure (4  mTorr) and substrate temperature (300  °C). The resulting nc-TiC/a-SiC films performed well as electrical contact material. These films' electrical-contact resistance against Ag was remarkably low, 6  µ at a contact force of 800  N compared to 3.2  µ for Ag against Ag. The chemical stability of the nc-TiC/a-SiC films was excellent, as shown by a Battelle flowing mixed corrosive-gas test, with no N, Cl, or S contaminants entering the bulk of the films.
  •  
5.
  • Emmerlich, Jens, 1974-, et al. (författare)
  • Growth of Ti3SiC2 thin films by elemental target magnetron sputtering
  • 2004
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 96:9, s. 4817-4826
  • Tidskriftsartikel (refereegranskat)abstract
    • Epitaxial Ti3SiC2(0001) thin films have been deposited by dc magnetron sputtering from three elemental targets of Ti, C, and Si onto MgO(111) and Al2O3(0001) substrates at temperatures of 800–900 °C. This process allows composition control to synthesize Mn + 1AXn (MAX) phases (M: early transition metal; A: A-group element; X: C and/or N; n = 1–3) including Ti4SiC3. Depositions on MgO(100) substrates yielding the Ti–Si–C MAX phases with (105), as the preferred orientation. Samples grown at different substrate temperatures, studied by means of transmission electron microscopy and x-ray diffraction investigations, revealed the constraints of Ti3SiC2 nucleation due to kinetic limitations at substrate temperatures below 700 °C. Instead, there is a competitive TiCx growth with Si segregation to form twin boundaries or Si substitutional incorporation in TiCx. Physical properties of the as-deposited single-crystal Ti3SiC2 films were determined. A low resistivity of 25 µ cm was measured. The Young's modulus, ascertained by nanoindentation, yielded a value of 343–370 GPa. For the mechanical deformation response of the material, probing with cube corner and Berkovich indenters showed an initial high hardness of almost 30 GPa. With increased maximum indentation loads, the hardness was observed to decrease toward bulk values as the characteristic kink formation sets in with dislocation ordering and delamination at basal planes.
  •  
6.
  • Filho, Luimar Correa, et al. (författare)
  • The Effect of Coating Density on Functional Properties of SiNx Coated Implants
  • 2019
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 12:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Ceramic coatings may be applied onto metallic components of joint replacements for improved wear and corrosion resistance as well as enhanced biocompatibility, especially for metal-sensitive patients. Silicon nitride (SiNx) coatings have recently been developed for this purpose. To achieve a high coating density, necessary to secure a long-term performance, is however challenging, especially for sputter deposited SiNx coatings, since these coatings are insulating. This study investigates the time-dependent performance of sputter-deposited SiNx based coatings for joint applications. SiNx coatings with a thickness in the range of 4.3–6.0 µm were deposited by reactive high power impulse magnetron sputtering onto flat discs as well as hip heads made of CoCrMo. SiNx compositional analysis by X-ray photoelectron spectroscopy showed N/Si ratios between 0.8 and 1.0. Immersion of the flat disks in fetal bovine serum solution over time as well as short-term wear tests against ultra-high molecular weight polyethylene (UHMWPE) discs showed that a high coating density is required to inhibit tribocorrosion. Coatings that performed best in terms of chemical stability were deposited using a higher target power and process heating.
  •  
7.
  •  
8.
  • Filho, Luimar, et al. (författare)
  • The effect of N, C, Cr, and Nb content on silicon nitride coatings for joint applications
  • 2020
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ceramic coatings are an alternative to achieve or maintain a high wear resistance of metallic surfaces, and simultaneously allow for a reduction in metal ion release. Silicon nitride based (SiNx) coatings deposited by high power impulse magnetron sputtering (HiPIMS) have shown potential for use in joint implants seen from an improved chemical stability in combination with a good adhesion. The aim of this study was to investigate the effect of N, C, Cr and Nb content on the tribocorrosive performance of 3.7 to 8.8 µm thick SiNx coatings deposited by HiPIMS onto CoCrMo discs to improve  the mechanical properties and/or chemical stability of SiNx .Coating composition was evaluated by X-ray photoelectron spectroscopy (XPS) and the surface roughness by Vertical Scanning Interferometry (VSI). Hardness and Young’s modulus were investigated by nanoindentation and coating adhesion was measured by scratch tests. Multidirectional wear tests against UHMWPE pins were performed for 2 million cycles in bovine serum solution (25%) at 37°C, at an estimated contact pressure of 2.1 MPa.Coatings with a relatively low hardness tended to fail earlier in the wear test, due to chemical reactions and eventually dissolution, accelerated by the tribological contact. In fact, while no definite correlation could be observed between coating composition (N: 42.6-55.5 at%, C: 0-25.7 at%, Cr: 0 or 12.8 at%, and Nb: 0-24.5 at%) and wear performance, it was apparent that high-purity and/or -density coatings (i.e. low oxygen content and high nitrogen content) were desirable to prevent coating and/or counter surface wear. Coatings deposited with a higher energy fulfilled the target profile in terms of low surface roughness (Ra<20nm), adequate adhesion (Lc2>30N), chemical stability over time in the tribocorrosive environment, as well as low polymer wear, presenting potential for a future application in joint bearings.
  •  
9.
  • Filho, Luimar, et al. (författare)
  • Towards Functional Silicon Nitride Coatings for Joint Replacements
  • 2019
  • Ingår i: Coatings. - : MDPI AG. - 2079-6412. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon nitride (SiNx) coatings are currently under investigation as bearing surfaces for joint implants, due to their low wear rate and the good biocompatibility of both coatings and their potential wear debris. The aim of this study was to move further towards functional SiNx coatings by evaluating coatings deposited onto CoCrMo surfaces with a CrN interlayer, using different bias voltages and substrate rotations. Reactive direct current magnetron sputtering was used to coat CoCrMo discs with a CrN interlayer, followed by a SiNx top layer, which was deposited by reactive high-power impulse magnetron sputtering. The interlayer was deposited using negative bias voltages ranging between 100 and 900 V, and 1-fold or 3-fold substrate rotation. Scanning electron microscopy showed a dependence of coating morphology on substrate rotation. The N/Si ratio ranged from 1.10 to 1.25, as evaluated by X-ray photoelectron spectroscopy. Vertical scanning interferometry revealed that the coated, unpolished samples had a low average surface roughness between 16 and 33 nm. Rockwell indentations showed improved coating adhesion when a low bias voltage of 100 V was used to deposit the CrN interlayer. Wear tests performed in a reciprocating manner against Si3N4 balls showed specific wear rates lower than, or similar to that of CoCrMo. The study suggests that low negative bias voltages may contribute to a better performance of SiNx coatings in terms of adhesion. The low wear rates found in the current study support further development of silicon nitride-based coatings towards clinical application.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy