SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Hans) ;pers:(Schmidt Susann)"

Sökning: WFRF:(Persson Hans) > Schmidt Susann

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Filho, Luimar Correa, et al. (författare)
  • The Effect of Coating Density on Functional Properties of SiNx Coated Implants
  • 2019
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 12:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Ceramic coatings may be applied onto metallic components of joint replacements for improved wear and corrosion resistance as well as enhanced biocompatibility, especially for metal-sensitive patients. Silicon nitride (SiNx) coatings have recently been developed for this purpose. To achieve a high coating density, necessary to secure a long-term performance, is however challenging, especially for sputter deposited SiNx coatings, since these coatings are insulating. This study investigates the time-dependent performance of sputter-deposited SiNx based coatings for joint applications. SiNx coatings with a thickness in the range of 4.3–6.0 µm were deposited by reactive high power impulse magnetron sputtering onto flat discs as well as hip heads made of CoCrMo. SiNx compositional analysis by X-ray photoelectron spectroscopy showed N/Si ratios between 0.8 and 1.0. Immersion of the flat disks in fetal bovine serum solution over time as well as short-term wear tests against ultra-high molecular weight polyethylene (UHMWPE) discs showed that a high coating density is required to inhibit tribocorrosion. Coatings that performed best in terms of chemical stability were deposited using a higher target power and process heating.
  •  
3.
  •  
4.
  • Filho, Luimar, et al. (författare)
  • The effect of N, C, Cr, and Nb content on silicon nitride coatings for joint applications
  • 2020
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ceramic coatings are an alternative to achieve or maintain a high wear resistance of metallic surfaces, and simultaneously allow for a reduction in metal ion release. Silicon nitride based (SiNx) coatings deposited by high power impulse magnetron sputtering (HiPIMS) have shown potential for use in joint implants seen from an improved chemical stability in combination with a good adhesion. The aim of this study was to investigate the effect of N, C, Cr and Nb content on the tribocorrosive performance of 3.7 to 8.8 µm thick SiNx coatings deposited by HiPIMS onto CoCrMo discs to improve  the mechanical properties and/or chemical stability of SiNx .Coating composition was evaluated by X-ray photoelectron spectroscopy (XPS) and the surface roughness by Vertical Scanning Interferometry (VSI). Hardness and Young’s modulus were investigated by nanoindentation and coating adhesion was measured by scratch tests. Multidirectional wear tests against UHMWPE pins were performed for 2 million cycles in bovine serum solution (25%) at 37°C, at an estimated contact pressure of 2.1 MPa.Coatings with a relatively low hardness tended to fail earlier in the wear test, due to chemical reactions and eventually dissolution, accelerated by the tribological contact. In fact, while no definite correlation could be observed between coating composition (N: 42.6-55.5 at%, C: 0-25.7 at%, Cr: 0 or 12.8 at%, and Nb: 0-24.5 at%) and wear performance, it was apparent that high-purity and/or -density coatings (i.e. low oxygen content and high nitrogen content) were desirable to prevent coating and/or counter surface wear. Coatings deposited with a higher energy fulfilled the target profile in terms of low surface roughness (Ra<20nm), adequate adhesion (Lc2>30N), chemical stability over time in the tribocorrosive environment, as well as low polymer wear, presenting potential for a future application in joint bearings.
  •  
5.
  • Filho, Luimar, et al. (författare)
  • Towards Functional Silicon Nitride Coatings for Joint Replacements
  • 2019
  • Ingår i: Coatings. - : MDPI AG. - 2079-6412. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon nitride (SiNx) coatings are currently under investigation as bearing surfaces for joint implants, due to their low wear rate and the good biocompatibility of both coatings and their potential wear debris. The aim of this study was to move further towards functional SiNx coatings by evaluating coatings deposited onto CoCrMo surfaces with a CrN interlayer, using different bias voltages and substrate rotations. Reactive direct current magnetron sputtering was used to coat CoCrMo discs with a CrN interlayer, followed by a SiNx top layer, which was deposited by reactive high-power impulse magnetron sputtering. The interlayer was deposited using negative bias voltages ranging between 100 and 900 V, and 1-fold or 3-fold substrate rotation. Scanning electron microscopy showed a dependence of coating morphology on substrate rotation. The N/Si ratio ranged from 1.10 to 1.25, as evaluated by X-ray photoelectron spectroscopy. Vertical scanning interferometry revealed that the coated, unpolished samples had a low average surface roughness between 16 and 33 nm. Rockwell indentations showed improved coating adhesion when a low bias voltage of 100 V was used to deposit the CrN interlayer. Wear tests performed in a reciprocating manner against Si3N4 balls showed specific wear rates lower than, or similar to that of CoCrMo. The study suggests that low negative bias voltages may contribute to a better performance of SiNx coatings in terms of adhesion. The low wear rates found in the current study support further development of silicon nitride-based coatings towards clinical application.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • López, Alejandro, 1983-, et al. (författare)
  • Morphology and adhesion of silicon nitride coatings upon soaking in fetal bovine serum
  • 2018
  • Ingår i: 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization, Lisbon, March 26-29, 2018.
  • Konferensbidrag (refereegranskat)abstract
    • Total hip joint replacements are considered successful in providing patients with close- to-normal lives; however, revision surgeries still represent an individual and socioeconomic burden due to wear and failure of the implants, which occurs at a rate of 3-10% at 10 years. Therefore, eorts are being made to increase the lifespan of articial prostheses. Because of the impossibility to avoid wear debris, functional silicon nitride coatings are being developed due their low wearing, particle solubility and good biological response. However, a compromise needs to be found between coating reactivity and durability.A HIPIMS process was used to sputter a CrN interlayer followed by a SiNx top layer using 1- and 3-fold rotation in an industrial deposition system (CemeCon AG, Würselen, Germany). In order to measure the adhesion of the coatings to the cobalt-chromium-molybdenum substrates a scratch test was used, consisting of generating a scratch with a Rockwell C diamond stylus, at an increasing load from 0 to 100 N, at a displacement rate of 6mm/min. The samples were immersed in 25% fetal bovine serum solution to mimic synovial joint uid and scratched aer 0, 1, 3, 6 weeks periods in this solution. The cross-section of the coatings was assessed through Focused Ion Beam at 30kV for milling and 5kV for secondary electron imaging of the surface.The coatings demonstrated a high nitrogen content, previously shown to be benecial in terms of low dissolution rates. The deposition conditions and coating morphology were found to have an eect on the dissolution rate and thereby also the spallation failure of the coatings. These results are informative for the further development of these coatings into parts of functional 3D implants. 
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy