SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Per O. A.) ;pers:(Persson Ingemar)"

Sökning: WFRF:(Persson Per O. A.) > Persson Ingemar

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bouhafs, Chamseddine, et al. (författare)
  • Structural properties and dielectric function of graphene grown by high-temperature sublimation on 4H-SiC(000-1)
  • 2015
  • Ingår i: Journal of Applied Physics. - : American Institute of Physics (AIP). - 0021-8979 .- 1089-7550. ; 117:8, s. 085701-
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and controlling growth of graphene on the carbon face (C-face) of SiC presents a significant challenge. In this work, we study the structural, vibrational, and dielectric function properties of graphene grown on the C-face of 4H-SiC by high-temperature sublimation in an argon atmosphere. The effect of growth temperature on the graphene number of layers and crystallite size is investigated and discussed in relation to graphene coverage and thickness homogeneity. An amorphous carbon layer at the interface between SiC and the graphene is identified, and its evolution with growth temperature is established. Atomic force microscopy, micro-Raman scattering spectroscopy, spectroscopic ellipsometry, and high-resolution cross-sectional transmission electron microscopy are combined to determine and correlate thickness, stacking order, dielectric function, and interface properties of graphene. The role of surface defects and growth temperature on the graphene growth mechanism and stacking is discussed, and a conclusion about the critical factors to achieve decoupled graphene layers is drawn. (C) 2015 AIP Publishing LLC.
  •  
2.
  • Halim, Joseph, et al. (författare)
  • Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films
  • 2019
  • Ingår i: Journal of Physics. - : IOP PUBLISHING LTD. - 0953-8984 .- 1361-648X. ; 31:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) transition metal carbides and/or nitrides (MXenes) are a new class of 2D materials, with extensive opportunities for property tailoring due to the numerous possibilities for varying chemistries and surface terminations. Here, Ti2AlC and Nb2AlC MAX phase epitaxial thin films were deposited on sapphire substrates by physical vapor deposition. The films were then etched in LiF/HCl solutions, yielding Li-intercalated, 2D Ti2CTz and Nb2CTz films, whose terminations, transport and optical properties were characterized. The former exhibits metallic conductivity, with weak localization below 50 K. In contrast, the Nb-based film exhibits an increase in resistivity with decreasing temperature from RT down to 40K consistent with variable range hopping transport. The optical properties of both films were determined from spectroscopic ellipsometry in the 0.75 to 3.50 eV range. The results for Ti2Clz films confirm the metallic behavior. In contrast, no evidence of metallic behavior is observed for the Nb2CT(z) film. The present work therefore demonstrates that one fruitful approach to alter the electronic and optical properties of MXenes is to change the nature of the transition metal.
  •  
3.
  • Halim, Joseph, et al. (författare)
  • Sodium hydroxide and vacuum annealing modifications of the surface terminations of a Ti3C2 (MXene) epitaxial thin film
  • 2018
  • Ingår i: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 8:64, s. 36785-36790
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate, and quantify, changes in structure and surface terminations of epitaxial thin films of titanium carbide (Ti3C2) MXene, when treated by sodium hydroxide solution followed by vacuum annealing at 550 degrees C. Using X-ray photoelectron spectroscopy and scanning transmission electron microscopy, we show that NaOH treatment produce an increase in the c-lattice parameter together with an increase in the O terminations and a decrease in the F terminations. There is also an increase in the percentage of the binding energy of Ti-species in Ti 2p XPS region, which suggests an increase in the overall oxidation state of Ti. After subsequent annealing, the c-lattice parameter is slightly reduced, the overall oxidation state of Ti is decreased, and the F surface terminations are further diminished, leaving a surface with predominantly O as the surface terminating species. It is important to note that NaOH treatment facilitates removal of F at lower annealing temperatures than previously reported, which in turn is important for the range of attainable properties.
  •  
4.
  • Alnoor, Hatim, et al. (författare)
  • Exploring MXenes and their MAX phase precursors by electron microscopy
  • 2021
  • Ingår i: Materials Today Advances. - : Elsevier. - 2590-0498. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • This review celebrates the width and depth of electron microscopy methods and how these have enabled massive research efforts on MXenes. MXenes constitute a powerful recent addition to 2-dimensional materials, derived from their parent family of nanolaminated materials known as MAX phases. Owing to their rich chemistry, MXenes exhibit properties that have revolutionized ranges of applications, including energy storage, electromagnetic interference shielding, water filtering, sensors, and catalysis. Few other methods have been more essential in MXene research and development of corresponding applications, compared with electron microscopy, which enables structural and chemical identification at the atomic scale. In the following, the electron microscopy methods that have been applied to MXene and MAX phase precursor research are presented together with research examples and are discussed with respect to advantages and challenges.
  •  
5.
  • Palisaitis, Justinas, et al. (författare)
  • Where is the unpaired transition metal in substoichiometric diboride line compounds?
  • 2021
  • Ingår i: Acta Materialia. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1359-6454 .- 1873-2453. ; 204
  • Tidskriftsartikel (refereegranskat)abstract
    • The atomic structure and local composition of high quality epitaxial substoichiometric titanium diboride (TiB1.9) thin film, deposited by unbalanced magnetron sputtering, were studied using analytical high-resolution scanning transmission electron microscopy, density functional theory, and image simulations. The unpaired Ti is pinpointed to inclusion of Ti-based stacking faults within a few atomic layers, which terminates the {1 (1) over bar 00} prismatic planes of the crystal structure and attributed to the absence of B between Ti planes that locally relaxes the structure. This mechanism allows the line compound to accommodate off-stoichiometry and remain a line compound between defects. The planar defects are embedded in otherwise stoichiometric TiB2 and are delineated by insertion of dislocations. An accompanied decrease in Ti-Ti bond lengths along and across the faults is observed. (c) 2020ActaMaterialiaInc. PublishedbyElsevierLtd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
  •  
6.
  • Persson, Ingemar, et al. (författare)
  • 2D Transition Metal Carbides (MXenes) for Carbon Capture
  • 2019
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 31:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming caused by burning of fossil fuels is indisputably one of mankinds greatest challenges in the 21st century. To reduce the ever-increasing CO2 emissions released into the atmosphere, dry solid adsorbents with large surface-to-volume ratio such as carbonaceous materials, zeolites, and metal-organic frameworks have emerged as promising material candidates for capturing CO2. However, challenges remain because of limited CO2/N-2 selectivity and long-term stability. The effective adsorption of CO2 gas (approximate to 12 mol kg(-1)) on individual sheets of 2D transition metal carbides (referred to as MXenes) is reported here. It is shown that exposure to N-2 gas results in no adsorption, consistent with first-principles calculations. The adsorption efficiency combined with the CO2/N-2 selectivity, together with a chemical and thermal stability, identifies the archetype Ti3C2 MXene as a new material for carbon capture (CC) applications.
  •  
7.
  • Persson, Ingemar, et al. (författare)
  • How Much Oxygen Can a MXene Surface Take Before It Breaks?
  • 2020
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 30:47
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuning and tailoring of surface terminating functional species hold the key to unlock unprecedented properties for a wide range of applications of the largest 2D family known as MXenes. However, a few routes for surface tailoring are explored and little is known about the extent to which the terminating species can saturate the MXene surfaces. Among available terminations, atomic oxygen is of interest for electrochemical energy storage, hydrogen evolution reaction, photocatalysis, etc. However, controlled oxidation of the surfaces is not trivial due to the favored formation of oxides. In the present contribution, single sheets of Ti3C2Tx MXene, inherently terminated by F and O, are defluorinated by heating in vacuum and subsequentially exposed to O-2 gas at temperatures up to 450 degrees C in situ, in an environmental transmission electron microscope. Results include exclusive termination by O on the MXene surfaces and eventual supersaturation (x amp;gt; 2) with a retained MXene sheet structure. Upon extended O exposure, the MXene structure transforms into TiO2 and desorbs surface bound H2O and CO2 reaction products. These results are fundamental for understanding the oxidation, the presence of water on MXene surfaces, and the degradation of MXenes, and pave way for further tailoring of MXene surfaces.
  •  
8.
  • Persson, Ingemar, et al. (författare)
  • On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum
  • 2018
  • Ingår i: Current Opinion in Chemical Engineering. - : Institute of Physics Publishing (IOPP). - 2211-3398. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The two-dimensional (2D) MXene Ti(3)C(2)Tx is functionalized by surface groups (T-x) that determine its surface properties for, e.g. electrochemical applications. The coordination and thermal properties of these surface groups has, to date, not been investigated at the atomic level, despite strong variations in the MXene properties that are predicted from different coordinations and from the identity of the functional groups. To alleviate this deficiency, and to characterize the functionalized surfaces of single MXene sheets, the present investigation combines atomically resolved in situ heating in a scanning transmission electron microscope (STEM) and STEM simulations with temperature-programmed x-ray photoelectron spectroscopy (TP-XPS) in the room temperature to 750 degrees C range. Using these techniques, we follow the surface group coordination at the atomic level. It is concluded that the F and O atoms compete for the DFT-predicted thermodynamically preferred site and that at room temperature that site is mostly occupied by F. At higher temperatures, F desorbs and is replaced by O. Depending on the O/F ratio, the surface bare MXene is exposed as F desorbs, which enables a route for tailored surface functionalization.
  •  
9.
  • Persson, Ingemar, et al. (författare)
  • Origin of layer decoupling in ordered multilayer graphene grown by high-temperature sublimation on C-face 4H-SiC
  • 2020
  • Ingår i: APL Materials. - : AMER INST PHYSICS. - 2166-532X. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the origin of layer decoupling in ordered multilayer graphene grown by high temperature sublimation on C-face 4H-SiC. The mid-infrared optical Hall effect technique is used to determine the magnetic field dependence of the inter-Landau level transition energies and their optical polarization selection rules, which unambiguously show that the multilayer graphene consists of electronically decoupled layers. Transmission electron microscopy reveals no out-of-plane rotational disorder between layers in the stack, which is in contrast to what is typically observed for C-face graphene grown by low temperature sublimation. It is found that the multilayer graphene maintains AB-stacking order with increased interlayer spacing by 2.4%-8.4% as compared to highly oriented pyrolytic graphite. Electron energy loss spectroscopy mapping reveals Si atoms trapped in between layers, which are proposed to be the cause for the observed increased interlayer spacing leading to layer decoupling. Based on our results, we propose a defect-driven growth evolution mechanism for multilayer graphene on C-face SiC via high temperature sublimation.
  •  
10.
  • Persson, Ingemar, et al. (författare)
  • Tailoring Structure, Composition, and Energy Storage Properties of MXenes from Selective Etching of In-Plane, Chemically Ordered MAX Phases
  • 2018
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829. ; 14:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The exploration of 2D solids is one of our times generators of materials discoveries. A recent addition to the 2D world is MXenes that possses a rich chemistry due to the large parent family of MAX phases. Recently, a new type of atomic laminated phases (coined i-MAX) is reported, in which two different transition metal atoms are ordered in the basal planes. Herein, these i-MAX phases are used in a new route for tailoriong the MXene structure and composition. By employing different etching protocols to the parent i-MAX phase (Mo2/3Y1/3)(2)AlC, the resulting MXene can be either: i) (Mo2/3Y1/3)(2)C with in-plane elemental order through selective removal of Al atoms or ii) Mo1.33C with ordered vacancies through selective removal of both Al and Y atoms. When (Mo2/3Y1/3)(2)C (ideal stoichiometry) is used as an electrode in a supercapacitor-with KOH electrolytea volumetric capacitance exceeding 1500 F cm(-3) is obtained, which is 40% higher than that of its Mo1.33C counterpart. With H2SO4, the trend is reversed, with the latter exhibiting the higher capacitance (approximate to 1200 F cm(-3)). This additional ability for structural tailoring will indubitably prove to be a powerful tool in property-tailoring of 2D materials, as exemplified here for supercapacitors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy