SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Per O. A.) ;pers:(Zhou Jie)"

Sökning: WFRF:(Persson Per O. A.) > Zhou Jie

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Mian, et al. (författare)
  • Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 141:11, s. 4730-4737
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.
  •  
2.
  • Li, Mian, et al. (författare)
  • Halogenated Ti3C2 MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries
  • 2021
  • Ingår i: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 15:1, s. 1077-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • The class of two-dimensional metal carbides and nitrides known as MXenes offer a distinct manner of property tailoring for a wide range of applications. The ability to tune the surface chemistry for expanding the property space of MXenes is thus an important topic, although experimental exploration of surface terminals remains a challenge. Here, we synthesized Ti3C2 MXene with unitary, binary, and ternary halogen terminals, e.g., -Cl, -Br, -I, -BrI, and -ClBrI, to investigate the effect of surface chemistry on the properties of MXenes. The electrochemical activity of Br and I elements results in the extraordinary electrochemical performance of the MXenes as cathodes for aqueous zinc ion batteries. The -Br- and -I-containing MXenes, e.g., Ti3C2Br2 and Ti3C2I2, exhibit distinct discharge platforms with considerable capacities of 97.6 and 135 mA.g(-1). Ti3C2 (BrI) and Ti3C2 (ClBrI) exhibit dual discharge platforms with capacities of 117.2 and 106.7 mAh.g(-1). In contrast, the previously discovered MXenes Ti3C2Cl2 and Ti3C2 (OF) exhibit no discharge platforms and only similar to 50% of capacities and energy densities of Ti3C2Br2. These results emphasize the effectiveness of the Lewis-acidic-melt etching route for tuning the surface chemistry of MXenes and also show promise for expanding the MXene family toward various applications.
  •  
3.
  • Zhou, Jie, et al. (författare)
  • Boridene: Two-dimensional Mo4/3B2-x with ordered metal vacancies obtained by chemical exfoliation
  • 2021
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 373:6556, s. 801-
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive research has been invested in two-dimensional (2D) materials, typically synthesized by exfoliation of van der Waals solids. One exception is MXenes, derived from the etching of constituent layers in transition metal carbides and nitrides. We report the experimental realization of boridene in the form of single-layer 2D molybdenum boride sheets with ordered metal vacancies, Mo4/3B2-xTz (where T-z is fluorine, oxygen, or hydroxide surface terminations), produced by selective etching of aluminum and yttrium or scandium atoms from 3D in-plane chemically ordered (Mo2/3Y1/3)(2)AlB2 and (Mo2/3Sc1/3)(2)AlB2 in aqueous hydrofluoric acid. The discovery of a 2D transition metal boride suggests a wealth of future 2D materials that can be obtained through the chemical exfoliation of laminated compounds.
  •  
4.
  • Zhou, Jie, et al. (författare)
  • Two-Dimensional Hydroxyl-Functionalized and Carbon-Deficient Scandium Carbide, ScCxOH, a Direct Band Gap Semiconductor
  • 2019
  • Ingår i: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 13:2, s. 1195-1203
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) materials have attracted intense attention in nanoscience and nanotechnology due to their outstanding properties. Among these materials, the emerging family of 2D transition metal carbides, carbonitrides, and nitrides (referred to as MXenes) stands out because of the vast available chemical space for tuning materials chemistry and surface termination, offering opportunities for property tailoring. Specifically, semiconducting properties are needed to enable utilization in optoelectronics, but direct band gaps are experimentally challenging to achieve in these 2D carbides. Here, we demonstrate the fabrication of 2D hydroxyl-functionalized and carbon-deficient scandium carbide, namely, ScCxOH, by selective etching of a layered parent ScAI(3)C(3) compound. The 2D configuration is determined as a direct band gap semiconductor, with an experimentally measured band gap approximated at 2.5 eV. Furthermore, this ScCxOH-based device exhibits excellent photoresponse in the ultraviolet-visible light region (responsivity of 0.125 A/W at 360 nm/10 V, and quantum efficiency of 43%). Thus, this 2D ScCxOH direct band gap semiconductor may find applications in visible light detectors, photocatalytic chemistry, and optoelectronic devices.
  •  
5.
  • Dahlqvist, Martin, et al. (författare)
  • Theoretical Prediction and Synthesis of a Family of Atomic Laminate Metal Borides with In-Plane Chemical Ordering
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 142:43, s. 18583-18591
  • Tidskriftsartikel (refereegranskat)abstract
    • All atomically laminated MAB phases (M = transition metal, A = A-group element, and B = boron) exhibit orthorhombic or tetragonal symmetry, with the only exception being hexagonal Ti2InB2. Inspired by the recent discovery of chemically ordered hexagonal carbides, i-MAX phases, we perform an extensive first-principles study to explore chemical ordering upon metal alloying of M2AlB2 (M from groups 3 to 9) in orthorhombic and hexagonal symmetry. Fifteen stable novel phases with in-plane chemical ordering are identified, coined i-MAB, along with 16 disordered stable alloys. The predictions are verified through the powder synthesis of Mo4/3Y2/3 AlB2 and Mo4/3Sc2/3AlB2 of space group R (3) over barm (no. 166), displaying the characteristic in-plane chemical order of Mo and Y/Sc and Kagome ordering of the Al atoms, as evident from X-ray diffraction and electron microscopy. The discovery of i-MAB phases expands the elemental space of these borides with M = Sc, Y, Zr, Hf, and Nb, realizing an increased property tuning potential of these phases as well as their suggested potential twodimensional derivatives.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy