SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pertesi M) "

Sökning: WFRF:(Pertesi M)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Apostolou, P., et al. (författare)
  • Haplotype analysis reveals that the recurrent BRCA1 deletion of exons 23 and 24 is a Greek founder mutation
  • 2017
  • Ingår i: Clinical Genetics. - : Wiley. - 0009-9163 .- 1399-0004. ; 91:3, s. 482-487
  • Tidskriftsartikel (refereegranskat)abstract
    • A recurrent large genomic rearrangement (LGR) encompassing exons 23 and 24 of the BRCA1 gene has been identified in breast-ovarian cancer families of Greek origin. Its breakpoints have been determined as c.5406+664_*8273del11052 (RefSeq: NM_007294.3) and a diagnostic polymerase chain reaction (PCR) has been set up for rapid screening. In a series of 2,092 high-risk families completely screened for BRCA1 and BRCA2 germline mutations, we have found the deletion in 35 families (1.68%), representing 7.83% of the mutations identified in both genes and 10.3% of the total BRCA1 mutations. In order to characterize this deletion as a founder mutation, haplotype analysis was conducted in 60 carriers from 35 families, using three BRCA1 intragenic microsatellite markers and four markers surrounding the BRCA1 locus. Our results demonstrate a common shared core disease-associated haplotype of 2.89Mb. Our calculations estimate that the deletion has originated from a common ancestor 1450years ago, which most probably inhabited the Asia Minor area. The particular (LGR) is the third mutation of such type that is proven to have a Greek founder effect in the Greek population, illustrating the necessity for LGRs testing in individuals of Greek descent.
  •  
4.
  • Dumontet, Charles, et al. (författare)
  • Clinical characteristics and outcome of 318 families with familial monoclonal gammopathy : A multicenter Intergroupe Francophone du Myélome study
  • 2023
  • Ingår i: American Journal of Hematology. - : Wiley. - 0361-8609 .- 1096-8652. ; 98:2, s. 264-271
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial forms of monoclonal gammopathy, defined as multiple myeloma (MM) or Monoclonal Gammopathy of Undetermined Significance (MGUS), are relatively infrequent and most series reported in the literature describe a limited number of families. MM rarely occurs in a familial context. MGUS is observed much more commonly, which can in some cases evolve toward full-blown MM. Although recurrent cytogenetic abnormalities have been described in tumor cells of sporadic cases of MM, the pathogenesis of familial MM remains largely unexplained. In order to identify genetic factors predisposing to familial monoclonal gammopathy, the Intergroupe Francophone du Myélome identified 318 families with at least two confirmed cases of monoclonal gammopathy. There were 169 families with parent/child pairs and 164 families with cases in at least two siblings, compatible with an autosomal transmission. These familial cases were compared with sporadic cases who were matched for age at diagnosis, sex and immunoglobulin isotype, with 10 sporadic cases for each familial case. The gender distribution, age and immunoglobulin subtypes of familial cases were unremarkable in comparison to sporadic cases. With a median follow-up of 7.4 years after diagnosis, the percentage of MGUS cases having evolved to MM was 3%. The median overall survival of the 148 familial MM cases was longer than that of matched sporadic cases, with projected values of 7.6 and 16.1 years in patients older and younger than 65 years, respectively. These data suggest that familial cases of monoclonal gammopathy are similar to sporadic cases in terms of clinical presentation and carry a better prognosis.
  •  
5.
  • Rydström, Anna, et al. (författare)
  • Functional and molecular profiling of hematopoietic stem cells during regeneration
  • 2023
  • Ingår i: Experimental Hematology. - 0301-472X .- 1873-2399. ; 127, s. 40-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cells (HSCs) enable hematopoietic stem cell transplantation (HCT) through their ability to replenish the entire blood system. Proliferation of HSCs is linked to decreased reconstitution potential, and a precise regulation of actively dividing HSCs is thus essential to ensure long-term functionality. This regulation becomes important in the transplantation setting where HSCs undergo proliferation followed by a gradual transition to quiescence and homeostasis. Although mouse HSCs have been well studied under homeostatic conditions, the mechanisms regulating HSC activation under stress remain unclear. Here, we analyzed the different phases of regeneration after transplantation. We isolated bone marrow from mice at 8 time points after transplantation and examined the reconstitution dynamics and transcriptional profiles of stem and progenitor populations. We found that regenerating HSCs initially produced rapidly expanding progenitors and displayed distinct changes in fatty acid metabolism and glycolysis. Moreover, we observed molecular changes in cell cycle, MYC and mTOR signaling in both HSCs, and progenitor subsets. We used a decay rate model to fit the temporal transcription profiles of regenerating HSCs and identified genes with progressively decreased or increased expression after transplantation. These genes overlapped to a large extent with published gene sets associated with key aspects of HSC function, demonstrating the potential of this data set as a resource for identification of novel HSC regulators. Taken together, our study provides a detailed functional and molecular characterization of HSCs at different phases of regeneration and identifies a gene set associated with the transition from proliferation to quiescence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy