SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pettersson Erik) ;lar1:(hh)"

Sökning: WFRF:(Pettersson Erik) > Högskolan i Halmstad

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Höglund, Linda, 1974-, et al. (författare)
  • Energy level scheme of InAs/InxGa1-xAs/GaAs quantum-dots-in-a-well infrared photodetector structures
  • 2010
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - Woodbury, NY : American Physical Society. - 1098-0121 .- 1550-235X. ; 82:3, s. 035314-
  • Tidskriftsartikel (refereegranskat)abstract
    • A thorough investigation of quantum-dots-in-a-well structures for infrared photodetector applications has been performed employing different experimental techniques. The electronic structure of self-assembled InAs quantum dots embedded in an In0.15Ga0.85As/GaAs quantum well (QW) was deduced from photoluminescence (PL) and PL excitation (PLE) spectroscopy. From polarization-dependent PL it was revealed that the quantum dots hold two electron energy levels and two heavy-hole levels. Tunnel capacitance spectroscopy confirmed an electron energy level separation of about 50 meV, and additionally, that the conduction-band ground state and excited state of the dots are twofold and fourfold degenerates, respectively. Intersubband photocurrent spectroscopy, combined with simultaneous interband pumping of the dots, revealed a dominant transition at 150 meV (8.5 mu m) between the ground state of the quantum dots and the excited state of the QW. Results from detailed full three-dimensional calculations of the electronic structure, including effects of composition intermixing and interdot interactions, confirm the experimentally unravelled energy level scheme of the dots and well.
  •  
2.
  • Pettersson, Håkan, et al. (författare)
  • Quantum Dots-in-a-Well Infrared Photodetectors-Electronic Structure and Optical Properties
  • 2010
  • Ingår i: Bulletin of American Physical Society. - : American Physical Society.
  • Konferensbidrag (refereegranskat)abstract
    • Quantum dots-in-a-well (DWELL) infrared photodetectors is a new class of nanophotonic devices with the potential of significantly increasing the performance and reducing the cost of infrared detectors. Here we present a comprehensive study of DWELL photodetector structures using a variety of optical techniques (PL, PLE, and PC). Complementary tunnel capacitance measurements support the electronic structure obtained from the optical measurements. A detailed energy level scheme based on the experimental findings is presented and compared to theoretical modeling. The presented work show the importance of combining different electrical and optical techniques to obtain a consistent model of complicated quantum structures which is crucial for the development of future nanophotonic devices.
  •  
3.
  • Aghaeipour, Mahtab, et al. (författare)
  • Comparative study of absorption efficiency of inclined and vertical InP nanowires
  • 2017
  • Ingår i: Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VI. - Bellingham, WA : SPIE - International Society for Optical Engineering. - 9781510606401 ; 10099
  • Konferensbidrag (refereegranskat)abstract
    • Geometrically designed III-V nanowire arrays are promising candidates for optoelectronics due to their possibility to excite nanophotonic resonances in absorption spectra. Strong absorption resonances can be obtained by proper tailoring of nanowire diameter, length and pitch. Such enhancement of the light absorption is, however, accompanied by undesired resonance dips at specific wavelengths. In this work, we theoretically show that tilting of the nanowires mitigates the absorption dips by exciting strong Mie resonances. In particular, we derive a theoretical optimum inclination angle of about 30 degrees at which the inclined nanowires gain 8% in absorption efficiency compared to vertically standing nanowires in a spectral region matching the intensity distribution of the sun. The enhancement is due to engineering the excited modes inside the nanowires regarding the symmetry properties of the nanowire/light system without increasing the absorbing material. We expect our results to be important for nanowire-based photovoltaic applications. © 2017 SPIE.
  •  
4.
  • Aghaeipour, Mahtab, et al. (författare)
  • Considering symmetry properties of inp nanowire/light incidence systems to gain broadband absorption
  • 2017
  • Ingår i: IEEE Photonics Journal. - Piscataway : IEEE. - 1943-0655. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Geometrically designed III-V nanowire arrays are promising candidates for disruptive optoelectronics due to the possibility of obtaining a strongly enhanced absorption resulting from nanophotonic resonance effects. With normally incident light on such vertical nanowire arrays, the absorption spectra exhibit peaks that originate from excitation of HE1m waveguide modes in the constituent nanowires. However, the absorption spectra typically show dips between the absorption peaks. Conventionally, such weak absorption has been counteracted by either making the nanowires longer or by decreasing the pitch of the array, both alternatives effectively increasing the volume of absorbing material in the array. Here, we first study two approaches for compensating the absorption dips by exciting additional Mie resonances: 1) oblique light incidence on vertical InP nanowire arrays and 2) normal light incidence on inclined InP nanowire arrays. We then show that branched nanowires offer a novel route to achieve broadband absorption by taking advantage of simultaneous excitations of Mie resonances in the branches and guided HE1m modes in the stem. Finite element method calculations show that the absorption efficiency is enhanced from 0.72 for vertical nanowires to 0.78 for branched nanowires under normal light incidence. Our work provides new insight for the development of novel efficient photovoltaics with high efficiency and reduced active material volume.
  •  
5.
  • Aghaeipour, Mahtab (författare)
  • Tailoring the Optical Response of III-V Nanowire Arrays
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Semiconductor nanowires show a great deal of promise for applications in a wide range of important fields, including photovoltaics, biomedicine, and information technology. Developing these exciting applications is strongly dependent on understanding the fundamental properties of nanowires, such as their optical resonances and absorption spectra. In this thesis we explore optical absorption spectra of arrays of vertical III-V nanowires with a special emphasis on structures optimized to enhance absorption in the solar spectrum. First, we analyze experimentally determined absorption spectra of both indium phosphide (InP) and gallium phosphide (GaP) nanowire arrays. The study provides an intuitive understanding of how the observed absorption resonances in the nanowires may be tuned as a function of their geometrical parameters and crystal structure. As a consequence, the spectral position of absorption resonances can be precisely controlled through the nanowire diameter. However, the results highlight how the blue-shift in the optical absorption resonances as the diameter of the nanowires decreases comes to a halt at low diameters. The stop point is related to the behavior of the refractive indices of the nanowires. The wavelength of the stop is different for nanowire polytypes of similar dimensions due to differences in their refractive indices. We then present a theoretical argument that it is important to consider symmetry properties when tailoring the optical modes excited in the nanowires for enhanced absorption. We show that absorption spectra may be enhanced compared to vertical nanowires at normal incidence by tilting the nanowires with normal incidence light, or by using off-normal incidence with vertical nanowires. This is because additional optical modes inside the nanowires are excited when the symmetry is broken. Looking forward to omnidirectional applications, we consider branched nanowires as a way to enhance the absorption spectra at normal incidence by taking advantage of simultaneous excitation of the spectrally different optical modes in the branches and the stems. Third, we describe in theoretical terms how integrating distributed Bragg reflectors (DBRs) with the nanowires can improve absorption spectra compared to conventional nanowires. DBRs provide a way to employ light trapping mechanisms which increases the optical path length of the excited modes and thereby improves the absorption of the excited modes. At normal incidence, DBR-nanowires improve the absorption efficiency to 78%, compared to 72% for conventional nanowires. We show that the efficiency is increased to 85% for an off-normal incident angle of 50˚. Overall, our results show that studies of optical resonances in nanowires that take the light-matter interaction into account provide opportunities to develop novel optical and optoelectronic functionalities in nanoscience and nanotechnology.
  •  
6.
  • Höglund, Linda, 1974-, et al. (författare)
  • Quantum dots-in-a-well infrared photodetectors for long wavelength infrared detection
  • 2006
  • Ingår i: Proceedings of SPIE. - Bellingham, Wash. : SPIE - International Society for Optical Engineering. - 9780819464996 ; 6401, s. 1-640109
  • Konferensbidrag (refereegranskat)abstract
    • We report on a quantum dots-in-a-well infrared photodetector (DWELL QDIP) grown by metal organic vapor phase epitaxy. The DWELL QDIP consisted of ten stacked InAs/In0.5Ga0.85As/GaAs QD layers embedded between n-doped contact layers. The density of the QDs was about 9 × 10 10 cm-2 per QD layer. The energy level structure of the DWELL was revealed by optical measurements of interband transitions, and from a comparison with this energy level scheme the origin of the photocurrent peaks could be identified. The main intersubband transition contributing to the photocurrent was associated with the quantum dot ground state to the quantum well excited state transition. The performance of the DWELL QDIPs was evaluated regarding responsivity and dark current for temperatures between 15 K and 77 K. The photocurrent spectrum was dominated by a LWIR peak, with a peak wavelength at 8.4 μm and a full width at half maximum (FWHM) of 1.1 μm. At an operating temperature of 65 K, the peak responsivity was 30 mA/W at an applied bias of 4 V and the dark current was 1.2×10-5 A/cm2. Wavelength tuning from 8.4 μm to 9.5 μm was demonstrated, by reversing the bias of the detector.
  •  
7.
  • Höglund, Linda, et al. (författare)
  • Tuning of the detection wavelength in quantum dots-in-a-well infrared photodetectors
  • 2008
  • Ingår i: Proceedings of SPIE, 6940, Infrared Technology and Applications XXXIV, 694002. - : SPIE. - 9780819471314
  • Konferensbidrag (refereegranskat)abstract
    • In this study, bias mediated tuning of the detection wavelength within the infrared wavelength region is demonstrated for quantum dots-in-a-well (DWELL) infrared photodetectors. In DWELL structures, intersubband transitions in the conduction band occur from a discrete state in the quantum dot to a subband inthe quantum well. Compared to "conventional" quantum dot infrared photodetectors, where the transitions take place between different discrete bands in thequantum dots, new possibilities to tune the detection wavelength window are opened up, partly by varying the quantum dot energy levels and partly by adjusting the width and composition of the quantum well. In the DWELL structure used, an asymmetric positioning of the InAs quantum dot layer in a 8 nm wide In0.15Ga0.85As/GaAs QW has been applied which enables tuning of the peak detection wavelength within the long wavelength infrared (LWIR; 8 - 14 gm) region. When the applied bias was reversed, a wavelength shift from 8.5 to 9.5 mu m was observed for the peak position in the spectral response. For another DWELL structure, with a well width of 2 nm, the tuning range of the detector could be shifted from the medium wavelength infrared (MWIR; 3-5 mu m) region to the LWIR region. With small changes in the applied bias, the peak detection wavelength could be shifted from 5.1 to 8 mu m. These tuning properties ofDWELL structures could be essential for applications such as modulators and two-colour infrared detection. © (2008) COPYRIGHT SPIE--The International Society for Optical Engineering.
  •  
8.
  • Pettersson, Håkan, et al. (författare)
  • Photoexcitation of excitons in self-assembled quantum dots
  • 2004
  • Ingår i: Applied Physics Letters. - : American Institute of Physics (AIP). - 0003-6951 .- 1077-3118. ; 85:21, s. 5046-5048
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an approach of combining Fourier transform infrared spectroscopy with resonant illumination from a secondary external light source, we have measured the photocurrent (PC) for multiple layers of self-assembled InAs dots embedded in a matrix of InP. Without external illumination, we observe photoexcitation of electrons from bound states in the dots to the InP barrier. By additional illumination from the external light source, a strong broadening of the PC signal is observed. We interpret this broadening in terms of photoexcitation of electrons in the presence of additional holes in the dots created by the external light source. We extract the spectral distribution of the photoexcitation process at 6 and 77 K, respectively, and show by comparison with theoretical calculations that it is consistent with an exciton binding energy of 20 meV.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy