SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pettersson Erik) ;pers:(Boman Christoffer)"

Sökning: WFRF:(Pettersson Erik) > Boman Christoffer

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Eriksson, Axel, et al. (författare)
  • Particulate PAH Emissions from Residential Biomass Combustion : Time-Resolved Analysis with Aerosol Mass Spectrometry
  • 2014
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 48:12, s. 7143-7150
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ~ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ~ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Muala, Ala, et al. (författare)
  • Respiratory Tract Deposition of Inhaled Wood Smoke Particles in Healthy Volunteers
  • 2015
  • Ingår i: Journal of Aerosol Medicine. - : Mary Ann Liebert Inc. - 1941-2711 .- 1941-2703. ; 28:4, s. 237-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Respiratory tract deposition of air pollution particles is a key to their adverse health effects. This study was aimed to determine the size-resolved deposition fraction (DF) of sooty wood smoke particles in the lungs of healthy subjects. The type of wood smoke investigated is typical for household air pollution from solid fuels, which is among the largest environmental health problems globally.Methods: Twelve healthy volunteers inhaled diluted wood smoke from incomplete soot-rich combustion in a common wood stove. The DF of smoke particles (10–500 nm) was measured during three 15-min exposures in each subject during spontaneous breathing. Lung function was measured using standard spirometry.Results: The total DFs by particle number concentration were 0.34±0.08. This can be compared with DFs of 0.21–0.23 in healthy subjects during previous experiments with wood pellet combustion. For particle mass, the total DFs found in this study were 0.22±0.06. DF and breathing frequency were negatively correlated as expected from model calculations (p<0.01).Conclusions: The DF of the investigated sooty wood smoke particles was higher than for previously investigated particles generated during more efficient combustion of biomass. Together with toxicological studies, which have indicated that incomplete biomass combustion particles rich in soot and polycyclic aromatic hydrocarbons (PAHs) are especially harmful, these data highlight the health risks of inadequate wood combustion.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy