SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pettersson Jan B. C. 1962 ) "

Sökning: WFRF:(Pettersson Jan B. C. 1962 )

  • Resultat 1-10 av 116
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bäckström, Daniel, 1985, et al. (författare)
  • Particle composition and size distribution in coal flames - The influence on radiative heat transfer
  • 2015
  • Ingår i: Experimental Thermal and Fluid Science. - : Elsevier BV. - 0894-1777 .- 1879-2286. ; 64, s. 70-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiative heat transfer in a 77 kWth swirling lignite flame has been studied. The aim is to characterize different particle types present in a coal flame and to determine their influence on the radiative heat transfer. The study combines extractive particle measurements, radiative intensity measurements and detailed radiation modelling. The size distribution of the extracted particles was measured with a low pressure impactor and some of the size fractions were analysed with SEM–EDX. The measured total radiative intensity is compared with the modelled intensity based on the particle measurements in the same cross-section of the flame. The particle properties were calculated with Mie theory and the gas properties with a statistical narrow-band model. The results show that the contribution of coal/char particles dominates the radiative heat transfer in the investigated cross-section of the flame. The methodology applied in this work shows promising results for characterization of particle radiation in flames of practical size.
  •  
2.
  • Boy, M., et al. (författare)
  • Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 2015-2061
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Centre of Excellence CRAICC (Cryosphere-Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011-2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols. The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change-cryosphere interactions that affect Arctic amplification.
  •  
3.
  • Davidsson, Kent, 1967, et al. (författare)
  • Potassium, chlorine, and sulfur in ash, particles, deposits, and corrosion during wood combustion in a circulating fluidized-bed boiler
  • 2007
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 21:1, s. 71-81
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of the addition of chlorine and/or sulfur to the fuel on fly ash composition, deposit formation, and superheater corrosion has been studied during biomass combustion in a circulating fluidized-bed boiler. The chlorine (HCl (aq)) and sulfur (SO2 (g)) were added in proportions of relevance for the potassium chemistry. The composition of the bottom and the fly ashes was analyzed. Gas and particle measurements were performed downstream of the cyclone before the convection pass and the flue gas composition was recorded in the stack with a series of standard instruments and an FTIR analyzer. At the position downstream of the cyclone, a deposit probe was situated, simulating a superheater tube. Deposits on the probe and initial corrosion were examined. It is concluded that addition of sulfur and chlorine increases the formation of submicron particles leading to deposition of potassium sulfate and chloride. The results compare well with earlier work based on laboratory-scale experiments concerning effects of chlorine and sulfur on potassium chemistry.
  •  
4.
  • Tan, W., et al. (författare)
  • Atmospheric Chemistry of 2-Amino-2-methyl-1-propanol: A Theoretical and Experimental Study of the OH-Initiated Degradation under Simulated Atmospheric Conditions
  • 2021
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 125:34, s. 7502-7519
  • Tidskriftsartikel (refereegranskat)abstract
    • The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations reproduce the experimental rate coefficient of the AMP + OH reaction, aligning k(T) = 5.2 x 10(-12) x exp (505/T) cm(3) molecule(-1) s(-1) to the experimental value k(exp,300K) = 2.8 x 10(-11) cm(3) molecule(-1) s(-1). The theoretical calculations predict that the AMP + OH reaction proceeds via hydrogen abstraction from the -CH3 groups (5-10%), -CH2- group, (>70%) and -NH2 group (5-20%), whereas hydrogen abstraction from the -OH group can be disregarded under atmospheric conditions. A detailed mechanism for atmospheric AMP degradation was obtained as part of the theoretical study. The photo-oxidation experiments show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)(2)C=NH], 2-iminopropanol [(CH3)(CH2OH)C=NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol [AMPNO(2), CH3C(CH3)(NHNO2)-CH2OH] as minor primary products; there is no experimental evidence of nitrosamine formation. The branching in the initial H abstraction by OH radicals was derived in analyses of the temporal gas-phase product profiles to be B-CH3/B-CH2/B-NH2 = 6:70:24. Secondary photo-oxidation products and products resulting from particle and surface processing of the primary gas-phase products were also observed and quantified. All the photo-oxidation experiments were accompanied by extensive particle formation that was initiated by the reaction of AMP with nitric acid and that mainly consisted of this salt. Minor amounts of the gas-phase photo-oxidation products, including AMPNO(2), were detected in the particles by CHARON-PTR-ToF-MS and GCxGC-NCD. Volatility measurements of laboratory-generated AMP nitrate nanoparticles gave Delta H-vap = 80 +/- 16 kJ mol(-1) and an estimated vapor pressure of (1.3 +/- 0.3) x 10(-5) Pa at 298 K. The atmospheric chemistry of AMP is evaluated and a validated chemistry model for implementation in dispersion models is presented.
  •  
5.
  • Andersson, Patrik U, 1970, et al. (författare)
  • Carbon dioxide interactions with crystalline and amorphous ice surfaces
  • 2004
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 108:21, s. 4627-4631
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide interactions with crystalline and amorphous water ice have been studied by time-resolved molecular beam techniques. CO2 collisions at thermal kinetic energies with ice in the temperature range 100-160 K result in efficient trapping on the ice surface followed by desorption. The desorption kinetics on crystalline ice at 100-125 K are well described by the Arrhenius equation with an activation energy of 0.22 +/- 0.02 eV and a preexponential factor of 10(13.32+/-0.57) s(-1). Below 120 K, CO2 populates strongly bonded sites on amorphous ice, resulting in surface residence times on the order of minutes at 100 K, and the desorption data can in this case not be explained by a simple first-order process. The results are compared to previous studies of gas-ice interactions, and the implications for heterogeneous processes in the terrestrial atmosphere are discussed.
  •  
6.
  • Bartels-Rausch, Thorsten, et al. (författare)
  • Ice structures, patterns, and processes: A view across the icefields
  • 2012
  • Ingår i: Reviews of Modern Physics. ; 84:2, s. 885-944
  • Forskningsöversikt (refereegranskat)abstract
    • From the frontiers of research on ice dynamics in its broadest sense, this review surveys the structures of ice, the patterns or morphologies it may assume, and the physical and chemical processes in which it is involved. Open questions in the various fields of ice research in nature are highlighted, ranging from terrestrial and oceanic ice on Earth, to ice in the atmosphere, to ice on other Solar System bodies and in interstellar space.
  •  
7.
  • Castarède, Dimitri, et al. (författare)
  • Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii)
  • 2023
  • Ingår i: Atmospheric Measurement Techniques. - 1867-1381. ; 16:16, s. 3881-3899
  • Tidskriftsartikel (refereegranskat)abstract
    • The Portable Ice Nucleation Chamber 2 (PINCii) is a newly developed continuous flow diffusion chamber (CFDC) for measuring ice nucleating particles (INPs). PINCii is a vertically oriented parallel-plate CFDC that has been engineered to improve upon the limitations of previous generations of CFDCs. This work presents a detailed description of the PINCii instrument and the upgrades that make it unique compared with other operational CFDCs. The PINCii design offers several possibilities for improved INP measurements. Notably, a specific icing procedure results in low background particle counts, which demonstrates the potential for PINCii to measure INPs at low concentrations ( < 10 L (-1)). High-spatial-resolution wall-temperature mapping enables the identification of temperature inhomogeneities on the chamber walls. This feature is used to introduce and discuss a new method for analyzing CFDC data based on the most extreme lamina conditions present within the chamber, which represent conditions most likely to trigger ice nucleation. A temperature gradient can be maintained throughout the evaporation section in addition to the main chamber, which enables PINCii to be used to study droplet activation processes or to extend ice crystal growth. A series of both liquid droplet activation and ice nucleation experiments were conducted at temperature and saturation conditions that span the spectrum of PINCii's operational conditions ( 50 <= temperature <= 15 degrees C and 100 <= relative humidity with respect to ice <= 160 %) to demonstrate the instrument's capabilities. In addition, typical sources of uncertainty in CFDCs, including particle background, particle loss, and variations in aerosol lamina temperature and relative humidity, are quantified and discussed for PINCii.
  •  
8.
  • Johansson, Sofia M., 1983, et al. (författare)
  • Understanding water interactions with organic surfaces: environmental molecular beam and molecular dynamics studies of the water-butanol system
  • 2019
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 21:3, s. 1141-1151
  • Tidskriftsartikel (refereegranskat)abstract
    • The interactions between water molecules and condensed n-butanol surfaces are investigated at temperatures from 160 to 240 K using the environmental molecular beam experimental method and complementary molecular dynamics (MD) simulations. In the experiments hyperthermal water molecules are directed onto a condensed n-butanol layer and the flux from the surface is detected in different directions. A small fraction of the water molecules scatters inelastically from the surface while losing 60-90% of their initial kinetic energy in collisions, and the angular distributions of these molecules are broad for both solid and liquid surfaces. The majority of the impinging water molecules are thermalized and trapped on the surface, while subsequent desorption is governed by two different processes: one where molecules bind briefly to the surface (residence time < 10 s), and another where the molecules trap for a longer time = 0.8-2.0 ms before desorbing. Water molecules trapped on a liquid n-butanol surface are substantially less likely to escape from the surface compared to a solid layer. The MD calculations provide detialed insight into surface melting, adsorption, absorption and desorption processes. Calculated angular distributions and kinetic energy of emitted water molecules agree well with the experimental data. In spite of its hydrophobic tail and enhanced surface organization below the melting temperature, butanol's hydrophilic functional groups are concluded to be surprisingly accessible to adsorbed water molecules; a finding that may be explained by rapid diffusion of water away from hydrophobic surface structures towards more strongly bound conformational structures.
  •  
9.
  • Romero Lejonthun, Liza, 1973, et al. (författare)
  • Chlorine interactions with water ice studied by molecular beam techniques.
  • 2006
  • Ingår i: The journal of physical chemistry. B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 110:46, s. 23497-501
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinetics of chlorine interactions with ice at temperatures between 103 and 165 K have been studied using molecular beam techniques. The Cl(2) trapping probability is found to be unity at thermal incident energies, and trapping is followed by rapid desorption. The residence time on the surface is less than 25 microg at temperatures above 135 K and approaches 1 s around 100 K. Rate constants for desorption are determined for temperatures below 135 K. The desorption kinetics follow the Arrhenius equation, and activation energies of 0.24 +/- 0.03 and 0.31 +/- 0.01 eV, with corresponding preexponential factors of 10(12.08+/-1.19) and 10(16.52+/-0.38) s(-1), are determined. At least two different Cl(2) binding sites are concluded to exist on the ice surface. The observed activation energies are likely to be the Cl(2)-ice binding energies for these states, and the Cl(2)-surface interactions are concluded to be stronger than earlier theoretical estimates. The surface coverage of Cl(2) on ice under stratospheric conditions is estimated to be negligible, in agreement with earlier work.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 116
Typ av publikation
tidskriftsartikel (101)
konferensbidrag (12)
rapport (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (108)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Pettersson, Jan B. C ... (116)
Kong, Xiangrui (44)
Andersson, Patrik U, ... (25)
Hallquist, Mattias, ... (22)
Thomson, Erik S (22)
Hagström, Magnus, 19 ... (15)
visa fler...
Markovic, Nikola, 19 ... (12)
Svane, Maria, 1957 (12)
Boman, Johan, 1955 (9)
Pathak, Ravi K. (9)
Engvall, Klas (8)
Mattisson, Tobias, 1 ... (7)
Öjekull, Jenny, 1973 (7)
Gall, Dan (6)
Olofson, K. Frans G. ... (6)
Kovacevik, Borka, 19 ... (6)
Ding, Saiman (6)
Leion, Henrik, 1976 (5)
Andersson, Viktor, 1 ... (5)
Suter, Martina, 1966 (5)
Janhäll, Sara, 1965- (5)
Pei, Xiangyu (5)
Davidsson, Kent O. (5)
Kantarelis, Efthymio ... (5)
Ge, Yaxin, 1992 (5)
Hellberg, Fredrik (4)
Danared, H. (4)
Larsson, M (4)
Larsson, Mats (4)
Thomas, Richard D. (4)
Källberg, A. (4)
Ehlerding, Anneli (4)
Andersson, Viktor, 1 ... (4)
Priestley, Michael (4)
Gatari, Michael J (4)
Castarède, Dimitri (4)
Pushp, Mohit (4)
Rosen, S. (3)
Chen, Deliang, 1961 (3)
Andersson, Klas, 197 ... (3)
af Ugglas, M (3)
Semaniak, J (3)
Ljungström, Evert, 1 ... (3)
Någård, Mats B (3)
Witt, Georg (3)
Österdahl, F (3)
Davidsson, Kent (3)
Bartels-Rausch, Thor ... (3)
Wagner, Annemarie, 1 ... (3)
Neau, A (3)
visa färre...
Lärosäte
Göteborgs universitet (116)
Chalmers tekniska högskola (34)
Kungliga Tekniska Högskolan (9)
RISE (9)
Stockholms universitet (8)
Lunds universitet (3)
visa fler...
Mittuniversitetet (2)
VTI - Statens väg- och transportforskningsinstitut (2)
Uppsala universitet (1)
Luleå tekniska universitet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (116)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (104)
Teknik (24)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (2)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy