Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pham Phillip) "

Sökning: WFRF:(Pham Phillip)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
  • Schork, Andrew J, et al. (författare)
  • All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs.
  • 2013
  • Ingår i: PLoS genetics. - 1553-7404. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide polymorphisms (SNPs). We applied stratified False Discovery Rate (sFDR) methods to leverage genic enrichment in GWAS summary statistics data to uncover new loci likely to replicate in independent samples. Specifically, we use linkage disequilibrium-weighted annotations for each SNP in combination with nominal p-values to estimate the True Discovery Rate (TDR = 1-FDR) for strata determined by different genic categories. We show a consistent pattern of enrichment of polygenic effects in specific annotation categories across diverse phenotypes, with the greatest enrichment for SNPs tagging regulatory and coding genic elements, little enrichment in introns, and negative enrichment for intergenic SNPs. Stratified enrichment directly leads to increased TDR for a given p-value, mirrored by increased replication rates in independent samples. We show this in independent Crohn's disease GWAS, where we find a hundredfold variation in replication rate across genic categories. Applying a well-established sFDR methodology we demonstrate the utility of stratification for improving power of GWAS in complex phenotypes, with increased rejection rates from 20% in height to 300% in schizophrenia with traditional FDR and sFDR both fixed at 0.05. Our analyses demonstrate an inherent stratification among GWAS SNPs with important conceptual implications that can be leveraged by statistical methods to improve the discovery of loci.
  • Lindblad, Peter, et al. (författare)
  • CyanoFactory, a European consortium to develop technologies needed to advance cyanobacteria as chassis for production of chemicals and fuels
  • 2019
  • Ingår i: Algal Research. - : Elsevier. - 2211-9264. ; 41
  • Forskningsöversikt (refereegranskat)abstract
    • CyanoFactory, Design, construction and demonstration of solar biofuel production using novel (photo) synthetic cell factories, was an R&D project developed in response to the European Commission FP7-ENERGY-2012-1 call "Future Emerging Technologies" and the need for significant advances in both new science and technologies to convert solar energy into a fuel. CyanoFactory was an example of "purpose driven" research and development with identified scientific goals and creation of new technologies. The present overview highlights significant outcomes of the project, three years after its successful completion. The scientific progress of CyanoFactory involved: (i) development of a ToolBox for cyanobacterial synthetic biology; (ii) construction of DataWarehouse/Bioinformatics web-based capacities and functions; (iii) improvement of chassis growth, functionality and robustness; (iv) introduction of custom designed genetic constructs into cyanobacteria, (v) improvement of photosynthetic efficiency towards hydrogen production; (vi) biosafety mechanisms; (vii) analyses of the designed cyanobacterial cells to identify bottlenecks with suggestions on further improvements; (viii) metabolic modelling of engineered cells; (ix) development of an efficient laboratory scale photobioreactor unit; and (x) the assembly and experimental performance assessment of a larger (1350 L) outdoor flat panel photobioreactor system during two seasons. CyanoFactory - Custom design and purpose construction of microbial cells for the production of desired products using synthetic biology - aimed to go beyond conventional paths to pursue innovative and high impact goals. CyanoFactory brought together ten leading European partners (universities, research organizations and enterprises) with a common goal - to develop the future technologies in Synthetic biology and Advanced photobioreactors.
  • Reimann, Julia, et al. (författare)
  • Archaeal Signal Transduction : Impact of Protein Phosphatase Deletions on Cell Size, Motility, and Energy Metabolism in Sulfolobus acidocaldarius
  • 2013
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 12:12, s. 3908-3923
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy