SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Philippe Bertrand Dr. 1986 ) "

Sökning: WFRF:(Philippe Bertrand Dr. 1986 )

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations
  • 2018
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 12:7, s. 7301-7311
  • Tidskriftsartikel (refereegranskat)abstract
    • We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.
  •  
2.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 555, s. 497-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
  •  
3.
  • Cappel, Ute B., et al. (författare)
  • Electronic Structure Characterization of Cross-Linked Sulfur Polymers
  • 2018
  • Ingår i: ChemPhysChem. - : WILEY-V C H VERLAG GMBH. - 1439-4235 .- 1439-7641. ; 19:9, s. 1041-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-linked polymers of elemental sulfur are of potential interest for electronic applications as they enable facile thin-film processing of an abundant and inexpensive starting material. Here, we characterize the electronic structure of a cross-linked sulfur/diisopropenyl benzene (DIB) polymer by a combination of soft and hard X-ray photoelectron spectroscopy (SOXPES and HAXPES). Two different approaches for enhancing the conductivity of the polymer are compared: the addition of selenium in the polymer synthesis and the addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) during film preparation. For the former, we observe the incorporation of Se into the polymer structure resulting in a changed valence-band structure. For the latter, a Fermi level shift in agreement with p-type doping of the polymer is observed and also the formation of a surface layer consisting mostly of TFSI anions.
  •  
4.
  • Cappel, Ute B, et al. (författare)
  • Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells.
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 9:40, s. 34970-34978
  • Tidskriftsartikel (refereegranskat)abstract
    • ) with the element specificity and chemical sensitivity of core-level photoelectron spectroscopy. By carrying out measurements at a synchrotron beamline optimized for low X-ray fluxes, we are able to avoid sample changes due to X-ray illumination and are therefore able to monitor what sample changes are induced by visible illumination only. We find that laser illumination causes partially reversible chemistry in the surface region, including enrichment of bromide at the surface, which could be related to a phase separation into bromide- and iodide-rich phases. We also observe a partially reversible formation of metallic lead in the perovskite structure. These processes occur on the time scale of minutes during illumination. The presented methodology has a large potential for understanding light-induced chemistry in photoactive materials and could specifically be extended to systematically study the impact of morphology and composition on the photostability of metal halide perovskites.
  •  
5.
  • Chernysheva, Ekaterina, et al. (författare)
  • Band alignment at Ag/ZnO(0001) interfaces : A combined soft and hard x-ray photoemission study
  • 2018
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 97:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Band alignment at the interface between evaporated silver films and Zn- or O-terminated polar orientations of ZnO is explored by combining soft and hard x-ray photoemissions on native and hydrogenated surfaces. Ultraviolet photoemission spectroscopy (UPS) is used to track variations of work function, band bending, ionization energy, and Schottky barrier during silver deposition. The absolute values of band bending and the bulk position of the Fermi level are determined on continuous silver films by hard x-ray photoemission spectroscopy (HAXPES) through a dedicated modeling of core levels. Hydrogenation leads to the formation of similar to 0.3 monolayer of donorlike hydroxyl groups on both ZnO-O and ZnO-Zn surfaces and to the release of metallic zinc on ZnO-Zn. However, no transition to an accumulation layer is observed. On bare surfaces, silver adsorption is cationic on ZnO(000 (1) over bar)-O [anionic on ZnO(0001)-Zn] at the earliest stages of growth as expected from polarity healing before adsorbing as a neutral species. UPS and HAXPES data appear quite consistent. The two surfaces undergo rather similar band bendings for all types of preparation. The downward band bending of V-bb,(ZnO-O) = -0.4 eV and V-bb,(ZnO-Zn) = -0.6 eV found for the bare surfaces is reinforced upon hydrogenation (V-bb,(ZnO-O+H) = -1.1 eV, V-bb,(ZnO-Zn+H) = -1.2 eV). At the interface with Ag, a unique value of band bending of -0.75 eV is observed. While exposure to atomic hydrogen modulates strongly the energetic positions of the surface levels, a similar Schottky barrier of 0.5-0.7 eV is found for thick silver films on the two surfaces.
  •  
6.
  •  
7.
  • Erbing, Axel, 1991-, et al. (författare)
  • Spatial microheterogeneity in the valence band of mixed halide hybrid perovskite materials
  • 2022
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 13:32, s. 9285-9294
  • Tidskriftsartikel (refereegranskat)abstract
    • The valence band of lead halide hybrid perovskites with a mixed I/Br composition is investigated using electronic structure calculations and complementarily probed with hard X-ray photoelectron spectroscopy. In the latter, we used high photon energies giving element sensitivity to the heavy lead and halide ions and we observe distinct trends in the valence band as a function of the I : Br ratio. Through electronic structure calculations, we show that the spectral trends with overall composition can be understood in terms of variations in the local environment of neighboring halide ions. From the computational model supported by the experimental evidence, a picture of the microheterogeneity in the valence band maximum emerges. The microheterogeneity in the valence band suggests that additional charge transport mechanisms might be active in lead mixed halide hybrid perovskites, which could be described in terms of percolation pathways.
  •  
8.
  • Jacobsson, Jesper, 1984-, et al. (författare)
  • Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping
  • 2018
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:25, s. 13548-13557
  • Tidskriftsartikel (refereegranskat)abstract
    • A trend in high performing lead halide perovskite solar cell devices has been increasing compositional complexity by successively introducing more elements, dopants, and additives into the structure; and some of the latest top efficiencies have been achieved with a quadruple cation mixed halide perovskite Cs(x)FA(y)MA(z)Rb(1-x-y-z)PbBr(q)I(3-9). This paper continues this trend by exploring doping of mixed lead halide perovskites, FA(0.83)MA(0.17)PbBr(0.51)I(2.49), with an extended set of alkali cations, i.e., Cs+, Rb+, K+, and Na+, as well as combinations of them. The doped perovskites were investigated with X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, hard X-ray photoelectron spectroscopy, UV-vis, steady state fluorescence, and ultrafast transient absorption spectroscopy. Solar cell devices were made as well. Cs+ can replace the organic cations in the perovskite structure, but Rb+, K+, and Na+ do not appear to do that. Despite this, samples doped with K and Na have substantially longer fluorescence lifetimes, which potentially could be beneficial for device performance.
  •  
9.
  • Jain, Sagar M., et al. (författare)
  • An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)(3)Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability
  • 2018
  • Ingår i: Nano Energy. - : ELSEVIER SCIENCE BV. - 2211-2855 .- 2211-3282. ; 49, s. 614-624
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a controlled, stepwise formation of methylammonium bismuth iodide (CH3NH3)(3)Bi2I9 perovskite films prepared via the vapour assisted solution process (VASP) by exposing BiI3 films to CH3NH3I (MAI) vapours for different reaction times, (CH3NH3)(3)Bi2I9 semiconductor films with tunable optoelectronic properties are obtained. Solar cells prepared on mesoporous TiO2 substrates yielded hysteresis-free efficiencies upto 3.17% with good reproducibility. The good performance is attributed mainly to the homogeneous surface coverage, improved stoichiometry, reduced metallic content in the bulk, and desired optoelectronic properties of the absorbing material. In addition, solar cells prepared using pure BiI3 films without MAI exposure achieved a power conversion efficiency of 0.34%. The non-encapsulated (CH3NH3)(3)Bi2I9 devices were found to be stable for as long as 60 days with only 0.1% drop in efficiency. This controlled formation of (CH3NH3)(3)Bi2I9 perovskite films highlights the benefit of the VASP technique to optimize material stoichiometry, morphology, solar cell performance, and long-term durability.
  •  
10.
  • Jalebi, Mojtaba Abdi, et al. (författare)
  • Potassium- and Rubidium-Passivated Alloyed Perovskite Films : Optoelectronic Properties and Moisture Stability
  • 2018
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 3:11, s. 2671-2678
  • Tidskriftsartikel (refereegranskat)abstract
    • Halide perovskites passivated with potassium or rubidium show superior photovoltaic device performance compared to unpassivated samples. However, it is unclear which passivation route is more effective for film stability. Here, we directly compare the optoelectronic properties and stability of thin films when passivating triple-cation perovskite films with potassium or rubidium species. The optoelectronic and chemical studies reveal that the alloyed perovskites are tolerant toward higher loadings of potassium than rubidium. Whereas potassium complexes with bromide from the perovskite precursor solution to form thin surface passivation layers, rubidium additives favor the formation of phase-segregated micron-sized rubidium halide crystals. This tolerance to higher loadings of potassium allows us to achieve superior passivation. We also find that exposure to a humid atmosphere drives phase luminescent properties with potassium segregation and grain coalescence for all compositions, with the rubidium-passivated sample showing the highest sensitivity to nonperovskite phase formation. Our work highlights the benefits but also the limitations of these passivation approaches in maximizing both optoelectronic properties and the stability of perovskite films.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (14)
annan publikation (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Philippe, Bertrand, ... (16)
Rensmo, Håkan (14)
Boschloo, Gerrit (5)
Pazoki, Meysam (3)
Friend, Richard H. (3)
Banerjee, Amitava (3)
visa fler...
Karis, Olof (3)
Chakraborty, Sudip (3)
Johansson, Erik (2)
Ahuja, Rajeev, 1965- (2)
Kloo, Lars (2)
Abdi-Jalebi, Mojtaba (2)
Alsari, Mejd (2)
Lilliu, Samuele (2)
Kullgren, Jolla, 197 ... (2)
Cacovich, Stefania (2)
Pearson, Andrew J. (2)
Divitini, Giorgio (2)
Ducati, Caterina (2)
Stranks, Samuel D. (2)
Butorin, Sergei (2)
Lindblad, Andreas (2)
Edström, Kristina, P ... (2)
Liu, Peng (2)
Kvashnina, Kristina ... (2)
Johansson, Fredrik (1)
Dar, M. Ibrahim (1)
Sadhanala, Aditya (1)
Diyitini, Giorgio (1)
Imani, Roghayeh (1)
Gratzel, Michael (1)
Andaji-Garmaroudi, Z ... (1)
Stavrakas, Camille (1)
Richter, Johannes M. (1)
Booker, Edward P. (1)
Hutter, Eline M. (1)
Savenije, Tom J. (1)
Durrant, James R. (1)
Lindbergh, Göran, 19 ... (1)
Ahuja, Rajeev (1)
Hagfeldt, Anders (1)
Cruguel, Herve (1)
Younesi, Reza (1)
Andrei, Virgil (1)
Aitola, Kerttu (1)
Correa-Baena, Juan-P ... (1)
Johansson, Erik M. J ... (1)
Marzano, Fernanda (1)
Tengstedt, Carl (1)
Lanzilotto, Valeria (1)
visa färre...
Lärosäte
Uppsala universitet (16)
Kungliga Tekniska Högskolan (8)
Stockholms universitet (2)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy