SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Philouze C) ;pers:(Styring Stenbjörn)"

Sökning: WFRF:(Philouze C) > Styring Stenbjörn

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrahamsson, M. L. A., et al. (författare)
  • Ruthenium-manganese complexes for artificial photosynthesis : Factors controlling intramolecular electron transfer and excited-state quenching reactions
  • 2002
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 41:6, s. 1534-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuing our work toward a system mimicking the electron-transfer steps from manganese to P-680(+) in photosystem II (PS II), we report a series of ruthenium(II)-manganese(II) complexes that display intramolecular electron transfer from manganese(II) to photooxidized ruthenium(III). The electron-transfer rate constant (k(ET)) values span a large range, 1 X 10(5)-2 x 10(7) s(-1), and we have investigated different factors that are responsible for the variation. The reorganization energies determined experimentally (lambda = 1.5-2.0 eV) are larger than expected for solvent reorganization in complexes of similar size in polar solvents (typically lambda approximate to 1.0 eV). This result indicates that the inner reorganization energy is relatively large and, consequently, that at moderate driving force values manganese complexes are not fast donors. Both the type of manganese ligand and the link between the two metals are shown to be of great importance to the electron-transfer rate. In contrast, we show that the quenching of the excited state of the ruthenium(II) moiety by manganese(II) in this series of complexes mainly depends on the distance between the metals. However, by synthetically modifying the sensitizer so that the lowest metal-to-ligand charge transfer state was localized on the nonbridging ruthenium(II) ligands, we could reduce the quenching rate constant in one complex by a factor of 700 without changing the bridging ligand. Still, the manganese(II)-ruthenium (III) electrontransfer rate constant was not reduced. Consequently, the modification resulted in a complex with very favorable properties.
  •  
2.
  • Sun, L C, et al. (författare)
  • Binuclear ruthenium-manganese complexes as simple artificial models for photosystem II in green plants
  • 1997
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 119:30, s. 6996-7004
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of a project aimed at developing models for photosystem II (PSII) in green plants, we have prepared a series of model compounds (7, 8, and 13). In these compounds, a photosensitizer, ruthenium(II) tris(bipyridyl) complex (to mimic the function of P-680 in PSII), was covalently linked to a manganese(II) ion through different bridging ligands. The structures of the compounds were characterized by electron paramagnetic resonance measurements and electrospray ionization mass spectrometry. The interaction between the ruthenium and manganese moieties within the complex was probed by steady-state and time-resolved emission measurements. When the binuclear complexes are exposed to flash photolysis in the presence of an electron acceptor such as methylviologen (MV2+), it could be shown that after the initial electron transfer from the excited state of Ru(II) in compound 7, forming Ru(III) and MV+., an intramolecular electron transfer from coordinated Mn(II) to the photogenerated Ru(III) occurred with a first-order rate constant of 1.8 x 10(5) s(-1), regenerating Ru(II). This is believed to be the first supramolecular system where a manganese complex has been used as an electron donor to a photo-oxidized photosensitizer, Possible extensions to develop the manganese donor, and thus to approach the function of reaction center in PSII, are indicated.
  •  
3.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy