SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pietreanu D.) "

Search: WFRF:(Pietreanu D.)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Singh, B. P., et al. (author)
  • Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR
  • 2015
  • In: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 51:8
  • Journal article (peer-reviewed)abstract
    • Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion (pi N) TDAs from (p) over barp -> e(+)e(-)pi(0) reaction with the future PANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q(2), the amplitude of the signal channel (p) over barp -> e(+)e(-)pi(0) admits a QCD factorized description in terms of pi N TDAs and nucleon Distribution Amplitudes (DAs) in the forward aid backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring (p) over barp -> e(+)e(-)pi(0) with the PANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. (p) over barp -> pi(+)pi(-)pi(0) were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q(2) < 4.3 GeV2 and 5 < q(2) < 9 GeV2, respectively, with a neutral pion scattered in the forward or backward cone vertical bar cos theta(pi 0)vertical bar > 0.5 in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the PANDA detector will allow to achieve a background rejection factor of 5 . 10(7) (1 . 10(7)) at low (high) q(2) for s = 5 GeV2, and of 1 . 10(8) (6 . 10(6)) at low (high) q(2) for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with PANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing pi N TDAs.
  •  
2.
  • Erni, W., et al. (author)
  • Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) Straw Tube Tracker
  • 2013
  • In: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 49:2
  • Journal article (peer-reviewed)abstract
    • This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole PANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.
  •  
3.
  • Tatsuno, H., et al. (author)
  • Future projects of light kaonic atom X-ray spectroscopy
  • 2016
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 130
  • Journal article (peer-reviewed)abstract
    • X-ray spectroscopy of light kaonic atoms is a unique tool to provide precise information on the fundamental KN interaction at the low-energy limit and the in-medium nuclear interaction of K-. The future experiments of kaonic deuterium strong-interaction shift and width (SIDDHARTA-2 and J-PARC E57) can extract the isospin dependent K-N interaction at threshold. The high-resolution X-ray spectroscopy of kaonic helium with microcalorimeters (J-PARC E62) has the possibility to solve the long-standing potential-strength problem of the attractive K--nucleus interaction. Here, the recent experimental results and the future projects of X-ray spectroscopy of light kaonic atoms are presented.
  •  
4.
  • Curceanu, C., et al. (author)
  • Kaonic deuterium measurement with Siddharta-2 on daΦNE
  • 2020
  • In: Acta Physica Polonica B. - 0587-4254. ; 51:1, s. 251-257
  • Journal article (peer-reviewed)abstract
    • The interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics with still many important open questions. The investigation of light kaonic atoms is, in this context, a unique tool to obtain precise information on this interaction. The most precise kaonic hydrogen measurement to date, together with an exploratory measurement of kaonic deuterium, were carried out by the SIDDHARTA Collaboration at the DAΦNE electron–positron collider of LNF-INFN, by combining the excellent quality kaon beam delivered by the collider with new experimental techniques, as fast and precise Silicon-Drift X-ray detectors. The measurement of kaonic deuterium will be realized in the near future by SIDDHARTA-2, a major upgrade of SIDDHARTA.
  •  
5.
  • Curceanu, C., et al. (author)
  • Low-energy kaon-nuclei interaction studies at DAΦNE : Siddharta-2 and amadeus
  • 2017
  • In: Acta Physica Polonica B. - 0587-4254. ; 48:10, s. 1855-1860
  • Journal article (peer-reviewed)abstract
    • The DAΦNE electron-positron collider of the Laboratori Nazionali di Frascati of INFN has made available a unique quality low-energy negatively charged kaons "beam", which is being used to study the kaon-nucleon/nuclei interactions by the SIDDHARTA-2 experiment and the AMADEUS Collaboration. The dynamics of the strong interaction processes in the nonperturbative regime is approached by lattice calculations and effective field theories (ChPT) which are still lacking experimental results in the lowenergy regime, fundamental for their good understanding. The studies of kaonic atoms and of the kaonic nuclear processes performed by SIDDHARTA- 2 and AMADEUS play in this context a key-role.
  •  
6.
  • Curceanu, C., et al. (author)
  • The kaonic atoms research program at DAΦNE : Overview and perspectives
  • 2018
  • In: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 1138:1
  • Journal article (peer-reviewed)abstract
    • The interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics with still many important open questions. The investigation of light kaonic atoms is, in this context, a unique tool to obtain precise information on this interaction. The energy shift and broadening of the lowest-lying states of such atoms, induced by the kaon-nucleus strong interaction, can be determined with high precision from atomic X-ray spectroscopy. This experimental method provides unique information to understand the low energy kaon-nucleus interaction at threshold. The lightest atomic systems, kaonic hydrogen and kaonic deuterium, deliver the isospin-dependent kaon-nucleon scattering lengths. The most precise kaonic hydrogen measurement to date, together with an exploratory measurement of kaonic deuterium, were carried out by the SIDDHARTA collaboration at the DAΦNE electron-positron collider of LNF-INFN, by combining the excellent quality kaon beam delivered by the collider with new experimental techniques, as fast and precise X-ray detectors: Silicon Drift Detectors. The measurement of kaonic deuterium will be realized in the near future by SIDDHARTA-2, a major upgrade of SIDDHARTA. In this paper an overview of the main results obtained by SIDDHARTA together with the future plans, are given.
  •  
7.
  • De Paolis, L., et al. (author)
  • Kaonic atoms measurement at DA Φ NE : SIDDHARTA and SIDDHARTA-2
  • 2019
  • In: Basic Concepts in Nuclear Physics : Theory, Experiments and Applications - 2018 La Rábida International Scientific Meeting on Nuclear Physics - Theory, Experiments and Applications - 2018 La Rábida International Scientific Meeting on Nuclear Physics. - Cham : Springer International Publishing. - 9783030222031 ; 225, s. 191-195
  • Conference paper (peer-reviewed)abstract
    • Light kaonic atoms studies provide the unique opportunity to perform experiments equivalent to scattering at threshold, being their atomic binding energies in the keV range. High precision atomic X-rays spectroscopy ensures that the energy shift and broadening of the lowest-lying states of the kaonic atoms, induced by the strong interaction between the kaon and nucleus, can be detected. Kaonic hydrogen and kaonic deuterium are the lightest atomic systems and their study deliver the isospin-dependent kaon-nucleon scattering lengths. The SIDDHARTA collaboration was able to perform the most precise kaonic hydrogen measurement to date, together with an exploratory measurement of kaonic deuterium. The measurement of the kaonic deuterium will be realized in the near future by a major upgrade of SIDDHARTA: SIDDHARTA-2. In this paper an overview of the main results obtained by SIDDHARTA together with the future plans are presented.
  •  
8.
  • Marton, J., et al. (author)
  • Spectroscopy of kaonic atoms at DAFNE and J-PARC
  • 2019
  • In: Proceedings - 15th International Workshop on Meson Physics, MESON 2018. - : EDP Sciences.
  • Conference paper (peer-reviewed)abstract
    • The interaction of antikaons (K) with nucleons and nuclei in the low-energy regime represents a very active research field in hadron physics. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states in the lightest kaonic atoms (i.e. kaonic hydrogen and deuterium). In the SIDDHARTA experiment at the electron-positron collider DAFNE of LNFINFN we measured the most precise values of the strong interaction observables in conic hydrogen. The strong interaction on the 1s ground state of the electromagnetically bound K-p atom causes an energy shift and broadening of the 1s state. SIDDHARTA will extend the spectroscopy to kaonic deuterium to get access to the antikaon-neutron interaction and thus the isospin dependent scattering lengths. At J-PARC a kaon beam is used in a complementary experiment with a different setup for spectroscopy of kaonic deuterium atoms. The talk will give an overview of the of the upcoming experiments SIDDHARTA and the complementary experiment at J-PARC.Furthermore, the implications of the experiments for the theory of low-energy strong interaction with strangeness will be discussed.
  •  
9.
  • Miliucci, M., et al. (author)
  • Kaonic Deuterium Precision Measurement at DA Φ NE : The SIDDHARTA-2 Experiment
  • 2020
  • In: Recent Progress in Few-Body Physics : Proceedings of the 22nd International Conference on Few-Body Problems in Physics, FB22 2018 - Proceedings of the 22nd International Conference on Few-Body Problems in Physics, FB22 2018. - Cham : Springer International Publishing. - 0930-8989 .- 1867-4941. - 9783030323578 - 9783030323561 ; 238, s. 965-969
  • Book chapter (peer-reviewed)abstract
    • Light kaonic atoms spectroscopy offers the unique opportunity to perform experiments equivalent to scattering at vanishing relative energies. This allows the determination of the antikaon-nucleus interaction at threshold, without the need of extrapolation to zero energy, as in the case of scattering experiments. In this framework, the SIDDHARTA-2 collaboration aims to perform the first measurement of kaonic deuterium transition to the fundamental level, which is mandatory to extract the isospin dependent antikaon—nucleon scattering lengths. The experiment will be carried out at the DA(formula presented)NE collider of LNF-INFN in 2019–2020.
  •  
10.
  • Scordo, A., et al. (author)
  • The kaonic atoms research program at DAΦNE : From SIDDHARTA to SIDDHARTA-2
  • 2018
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 181
  • Journal article (peer-reviewed)abstract
    • The interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics with still many important open questions. The investigation of light kaonic atoms, in which one electron is replaced by a negatively charged kaon, is a unique tool to provide precise information on this interaction; the energy shift and the broadening of the low-lying states of such atoms, induced by the kaon-nucleus hadronic interaction, can be determined with high precision from the atomic X-ray spectroscopy, and this experimental method provides unique information to understand the low energy kaon-nucleus interaction at the production threshold. The lightest atomic systems, like the kaonic hydrogen and the kaonic deuterium deliver, in a model-independent way, the isospin-dependent kaon-nucleon scattering lengths. The most precise kaonic hydrogen measurement to-date, together with an exploratory measurement of kaonic deuterium, were carried out in 2009 by the SIDDHARTA collaboration at the DAΦNE electron-positron collider of LNF-INFN, combining the excellent quality kaon beam delivered by the collider with new experimental techniques, as fast and very precise X-ray detectors, like the Silicon Drift Detectors. The SIDDHARTA results triggered new theoretical work, which achieved major progress in the understanding of the low-energy strong interaction with strangeness reflected by the antikaon-nucleon scattering lengths calculated with the antikaon-proton amplitudes constrained by the SIDDHARTA data. The most important open question is the experimental determination of the hadronic energy shift and width of kaonic deuterium; presently, a major upgrade of the setup, SIDDHARTA-2, is being realized to reach this goal. In this paper, the results obtained in 2009 and the proposed SIDDHARTA-2 upgrades are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view