SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pignata C) ;pers:(Elias Rosa N.)"

Sökning: WFRF:(Pignata C) > Elias Rosa N.

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ackley, K., et al. (författare)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
2.
  • Smartt, S. J., et al. (författare)
  • A kilonova as the electromagnetic counterpart to a gravitational-wave source
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7678, s. 75-
  • Tidskriftsartikel (refereegranskat)abstract
    • Gravitational waves were discovered with the detection of binary black-hole mergers(1) and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova(2-5). The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate(6). Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short.-ray burst(7,8). The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 +/- 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
  •  
3.
  • Smartt, S. J., et al. (författare)
  • PESSTO : survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5(m) for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 angstrom between 3345-9995 angstrom. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 mu m and resolutions 23-33 angstrom) and imaging with broadband JHK(s) filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically similar to 15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK(s) imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey.
  •  
4.
  • Andrews, Jennifer E., et al. (författare)
  • SN 2017gmr : An Energetic Type II-P Supernova with Asymmetries
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 885:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN;2017gmr from hours after discovery through the first 180 days. SN;2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ?500 R progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130;;0.026 M of Ni-56 are present, if the light curve is solely powered by radioactive decay, although the Ni-56 mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of H? and [O i] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.
  •  
5.
  • Fiore, A., et al. (författare)
  • Close, bright, and boxy : the superluminous SN 2018hti
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 512:3, s. 4484-4502
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2018hti was a very nearby (z = 0.0614) superluminous supernova with an exceedingly bright absolute magnitude of −21.7 mag in r band at maximum. The densely sampled pre-maximum light curves of SN 2018hti show a slow luminosity evolution and constrain the rise time to ∼50 rest-frame d. We fitted synthetic light curves to the photometry to infer the physical parameters of the explosion of SN 2018hti for both the magnetar and the CSM-interaction scenarios. We conclude that one of two mechanisms could be powering the luminosity of SN 2018hti; interaction with ∼10 M⊙ of circumstellar material or a magnetar with a magnetic field of Bp∼ 1.3 × 1013 G, and initial period of Pspin∼ 1.8 ms. From the nebular spectrum modelling we infer that SN 2018hti likely results from the explosion of a ∼40M⊙∼40M⊙ progenitor star.
  •  
6.
  • Gall, C., et al. (författare)
  • Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404 : SN 2007on and SN 2011iv
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 611
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Delta m(15)(B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B-and H-band magnitudes di ff er by similar to 0.60 mag and similar to 0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that di ff er by similar to 14% and similar to 9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B - V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, Ni-56 production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the di ff erences in the B - V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on.
  •  
7.
  • Kangas, T., et al. (författare)
  • Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy : the big brother of SN 1998S
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:1, s. 323-346
  • Tidskriftsartikel (refereegranskat)abstract
    • We present photometric and spectroscopic observations of SN 2013fc, a bright type II supernova (SN) in a circumnuclear star-forming ring in the luminous infrared galaxy ESO 154-G010, observed as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2013fc is both photometrically and spectroscopically similar to the well-studied type IIn SN 1998S and to the bright type II-L SN 1979C. It exhibits an initial linear decline, followed by a short plateau phase and a tail phase with a decline too fast for Co-56 decay with full. gamma-ray trapping. Initially, the spectrum was blue and featureless. Later on, a strong broad (similar to 8000 km s(-1)) H alpha emission profile became prominent. We apply a STARLIGHT stellar population model fit to the SN location (observed when the SN had faded) to estimate a high extinction of A(V) = 2.9 +/- 0.2 mag and an age of 10(+ 3) (- 2) Myr for the underlying cluster. We compare the SN to SNe 1998S and 1979C and discuss its possible progenitor star considering the similarities to these events. With a peak brightness of B = - 20.46 +/- 0.21 mag, SN 2013fc is 0.9 mag brighter than SN 1998S and of comparable brightness to SN 1979C. We suggest that SN 2013fc was consistent with a massive red supergiant (RSG) progenitor. Recent mass loss probably due to a strong RSG wind created the circumstellar matter illuminated through its interaction with the SN ejecta. We also observe a near- infrared excess, possibly due to newly condensed dust.
  •  
8.
  • Prentice, S. J., et al. (författare)
  • Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 485:2, s. 1559-1578
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations and analysis of 18 stripped-envelope supernovae observed during 2013-2018. This sample consists of five H/He-rich SNe, sixH-poor/He-rich SNe, three narrow lined SNe Ic, and four broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive Ni-56 and ejecta masses (M-Ni and M-cj). Additionally, the temperature evolution and spectral line velocity curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses < 20 M-circle dot. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting data set gives the M-ej distribution for 80 SE-SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median M-ej, followed by narrow-lined SNe Ic, H/He-rich SNe, broad-lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of M-ej ranging from similar to 1.2-11 M-circle dot, considerably greater than any other subtype. For all SE-SNe = 2.8 +/- 1.5 M-circle dot which further strengthens the evidence that SE-SNe arise from low-mass progenitors which are typically <5 M-circle dot at the time of explosion, again suggesting M-ZAMS < 25 M-circle dot. The low and lack of clear bimodality in the distribution implies < 30 M-circle dot progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe.
  •  
9.
  • Barbarino, C., et al. (författare)
  • SN 2012ec : mass of the progenitor from PESSTO follow-up of the photospheric phase
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 448:3, s. 2312-2331
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 x 10(42) erg s(-1) and duration similar to 90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(Ni-56) = 0.040 +/- 0.015 M-circle dot from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6 M-circle dot, an initial progenitor radius of 1.6 x 10(13) cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22 M-circle dot was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators.
  •  
10.
  • Pastorello, A., et al. (författare)
  • INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS : SN 2009ip, IS THIS THE END?
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 767:1, s. 1-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of a three-year-long dedicated monitoring campaign of a restless luminous blue variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We monitored a number of erupting episodes in the past few years, and increased the density of our observations during eruptive episodes. In this paper, we present the full historical data set from 2009 to 2012 with multi-wavelength dense coverage of the two high-luminosity events between 2012 August and September. We construct bolometric light curves and measure the total luminosities of these eruptive or explosive events. We label them the 2012a event (lasting similar to 50 days) with a peak of 3x10(41) erg s(-1), and the 2012b event (14 day rise time, still ongoing) with a peak of 8 x 1042 erg s(-1). The latter event reached an absolute R-band magnitude of about -18, comparable to that of a core-collapse supernova (SN). Our historical monitoring has detected high-velocity spectral features (similar to 13,000 km s(-1)) in 2011 September, one year before the current SN-like event. This implies that the detection of such high-velocity outflows cannot, conclusively, point to a core-collapse SN origin. We suggest that the initial peak in the 2012a event was unlikely to be due to a faint core-collapse SN. We propose that the high intrinsic luminosity of the latest peak, the variability history of SN 2009ip, and the detection of broad spectral lines indicative of high-velocity ejecta are consistent with a pulsational pair-instability event, and that the star may have survived the last outburst. The question of the survival of the LBV progenitor star and its future fate remain open issues, only to be answered with future monitoring of this historically unique explosion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy