SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pillar Valerio D.) "

Search: WFRF:(Pillar Valerio D.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Siefert, Andrew, et al. (author)
  • A global meta-analysis of the relative extent of intraspecific trait variation in plant communities
  • 2015
  • In: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 18:12, s. 1406-1419
  • Research review (peer-reviewed)abstract
    • Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies.
  •  
3.
  • Kuppler, Jonas, et al. (author)
  • Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness
  • 2020
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:6, s. 992-1007
  • Journal article (peer-reviewed)abstract
    • AimIntraspecific trait variation (ITV) within natural plant communities can be large, influencing local ecological processes and dynamics. Here, we shed light on how ITV in vegetative and floral traits responds to large‐scale abiotic and biotic gradients (i.e., climate and species richness). Specifically, we tested whether associations of ITV with temperature, precipitation and species richness were consistent with any of four hypotheses relating to stress tolerance and competition. Furthermore, we estimated the degree of correlation between ITV in vegetative and floral traits and how they vary along the gradients.LocationGlobal.Time period1975–2016.Major taxa studiedHerbaceous and woody plants.MethodsWe compiled a dataset of 18,401 measurements of the absolute extent of ITV (measured as the coefficient of variation) in nine vegetative and seven floral traits from 2,822 herbaceous and woody species at 2,372 locations.ResultsLarge‐scale associations between ITV and climate were trait specific and more prominent for vegetative traits, especially leaf morphology, than for floral traits. The ITV showed pronounced associations with climate, with lower ITV values in colder areas and higher values in drier areas. The associations of ITV with species richness were inconsistent across traits. Species‐specific associations across gradients were often idiosyncratic, and covariation in ITV was weaker between vegetative and floral traits than within the two trait groups.Main conclusionsOur results show that, depending on the traits considered, ITV either increased or decreased with climate stress and species richness, suggesting that both factors can constrain or enhance ITV, which might foster plant‐population persistence in stressful conditions. Given the species‐specific responses and covariation in ITV, associations can be hard to predict for traits and species not yet studied. We conclude that consideration of ITV can improve our understanding of how plants cope with stressful conditions and environmental change across spatial and biological scales.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3
Type of publication
journal article (2)
research review (1)
Type of content
peer-reviewed (3)
Author/Editor
Gross, Nicolas (2)
Violle, Cyrille (2)
Diaz, Sandra (1)
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Bond-Lamberty, Ben (1)
show more...
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Isaac, Marney (1)
Lewis, Simon L. (1)
Zieminska, Kasia (1)
Phillips, Oliver L. (1)
Prentice, Honor C (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Hickler, Thomas (1)
Rogers, Alistair (1)
Manzoni, Stefano (1)
Pakeman, Robin J. (1)
Poschlod, Peter (1)
Dainese, Matteo (1)
Ruiz-Peinado, Ricard ... (1)
van Bodegom, Peter M ... (1)
Wellstein, Camilla (1)
Björkman, Anne, 1981 (1)
Rillig, Matthias C. (1)
Tappeiner, Ulrike (1)
Sykes, Martin (1)
MARQUES, MARCIA (1)
Jactel, Hervé (1)
Castagneyrol, Bastie ... (1)
Scherer-Lorenzen, Mi ... (1)
van der Plas, Fons (1)
Cromsigt, Joris (1)
Jenkins, Thomas (1)
Boeckx, Pascal (1)
Estiarte, Marc (1)
Jentsch, Anke (1)
Peñuelas, Josep (1)
Reich, Peter B (1)
Le Roux, Peter C. (1)
Vandewalle, Marie (1)
Baker, William J. (1)
Onstein, Renske E. (1)
Barlow, Jos (1)
Berenguer, Erika (1)
Alves-Dos-Santos, Is ... (1)
Vamosi, Jana (1)
show less...
University
Swedish University of Agricultural Sciences (2)
University of Gothenburg (1)
Umeå University (1)
Uppsala University (1)
Stockholm University (1)
Lund University (1)
show more...
Karlstad University (1)
show less...
Language
English (3)
Research subject (UKÄ/SCB)
Natural sciences (3)
Agricultural Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view