SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pinto Dalila) ;hsvcat:3"

Sökning: WFRF:(Pinto Dalila) > Medicin och hälsovetenskap

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Docherty, Anna R, et al. (författare)
  • GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors.
  • 2023
  • Ingår i: The American journal of psychiatry. - : American Psychiatric Association Publishing. - 1535-7228 .- 0002-953X. ; 180:10, s. 723-738
  • Tidskriftsartikel (refereegranskat)abstract
    • Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures.This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses.Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values <5×10-8. These loci were mostly intergenic and implicated DRD2, SLC6A9, FURIN, NLGN1, SOX5, PDE4B, and CACNG2. The multi-ancestry SNP-based heritability estimate of SA was 5.7% on the liability scale (SE=0.003, p=5.7×10-80). Significant brain tissue gene expression and drug set enrichment were observed. There was shared genetic variation of SA with attention deficit hyperactivity disorder, smoking, and risk tolerance after conditioning SA on both major depressive disorder and posttraumatic stress disorder. Genetic causal proportion analyses implicated shared genetic risk for specific health factors.This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death.
  •  
2.
  •  
3.
  • Oei, Ling, et al. (författare)
  • A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus
  • 2014
  • Ingår i: Journal of Medical Genetics. - : BMJ Publishing Group. - 0022-2593 .- 1468-6244. ; 51:2, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Osteoporosis is a systemic skeletal disease characterised by reduced bone mineral density and increased susceptibility to fracture; these traits are highly heritable. Both common and rare copy number variants (CNVs) potentially affect the function of genes and may influence disease risk.AIM: To identify CNVs associated with osteoporotic bone fracture risk.METHOD: We performed a genome-wide CNV association study in 5178 individuals from a prospective cohort in the Netherlands, including 809 osteoporotic fracture cases, and performed in silico lookups and de novo genotyping to replicate in several independent studies.RESULTS: A rare (population prevalence 0.14%, 95% CI 0.03% to 0.24%) 210 kb deletion located on chromosome 6p25.1 was associated with the risk of fracture (OR 32.58, 95% CI 3.95 to 1488.89; p=8.69×10(-5)). We performed an in silico meta-analysis in four studies with CNV microarray data and the association with fracture risk was replicated (OR 3.11, 95% CI 1.01 to 8.22; p=0.02). The prevalence of this deletion showed geographic diversity, being absent in additional samples from Australia, Canada, Poland, Iceland, Denmark, and Sweden, but present in the Netherlands (0.34%), Spain (0.33%), USA (0.23%), England (0.15%), Scotland (0.10%), and Ireland (0.06%), with insufficient evidence for association with fracture risk.CONCLUSIONS: These results suggest that deletions in the 6p25.1 locus may predispose to higher risk of fracture in a subset of populations of European origin; larger and geographically restricted studies will be needed to confirm this regional association. This is a first step towards the evaluation of the role of rare CNVs in osteoporosis.
  •  
4.
  • Sato, Daisuke, et al. (författare)
  • SHANK1 Deletions in Males with Autism Spectrum Disorder.
  • 2012
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 90:5, s. 879-887
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have highlighted the involvement of rare (<1% frequency) copy-number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers-but not female carriers-have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1.
  •  
5.
  • Anney, Richard, et al. (författare)
  • A genome-wide scan for common alleles affecting risk for autism.
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:20, s. 4072-4082
  • Tidskriftsartikel (refereegranskat)abstract
    • Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
  •  
6.
  • Anney, Richard, et al. (författare)
  • Individual common variants exert weak effects on the risk for autism spectrum disorders.
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:21, s. 4781-92
  • Tidskriftsartikel (refereegranskat)abstract
    • While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASD), the contribution of common variation to ASD risk is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating association of individual SNPs, we also sought evidence that common variants, en masse, might affect risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest p-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. By contrast, allele-scores derived from the transmission of common alleles to Stage 1 cases significantly predict case-status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele-score results, it is reasonable to conclude that common variants affect ASD risk but their individual effects are modest.
  •  
7.
  • Casey, Jillian P, et al. (författare)
  • A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder.
  • 2012
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 131:4, s. 565-579
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.
  •  
8.
  •  
9.
  • Dhanraj, Santhosh, et al. (författare)
  • Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN)
  • 2015
  • Ingår i: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 52:11, s. 738-748
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Deadenylation regulates RNA function and fate. Poly(A)-specific ribonuclease (PARN) is a deadenylase that processes mRNAs and non-coding RNA. Little is known about the biological significance of germline mutations in PARN. Methods We identified mutations in PARN in patients with haematological and neurological manifestations. Genomic, biochemical and knockdown experiments in human marrow cells and in zebrafish have been performed to clarify the role of PARN in the human disease. Results We identified large monoallelic deletions in PARN in four patients with developmental delay or mental illness. One patient in particular had a severe neurological phenotype, central hypomyelination and bone marrow failure. This patient had an additional missense mutation on the non-deleted allele and severely reduced PARN protein and deadenylation activity. Cells from this patient had impaired oligoadenylation of specific H/ACA box small nucleolar RNAs. Importantly, PARN-deficient patient cells manifested short telomeres and an aberrant ribosome profile similar to those described in some variants of dyskeratosis congenita. Knocking down PARN in human marrow cells and zebrafish impaired haematopoiesis, providing further evidence for a causal link with the human disease. Conclusions Large monoallelic mutations of PARN can cause developmental/mental illness. Biallelic PARN mutations cause severe bone marrow failure and central hypomyelination.
  •  
10.
  • Leblond, Claire S, et al. (författare)
  • Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders.
  • 2012
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n=396 patients and n=659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P=0.004, OR=2.37, 95% CI=1.23-4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P=0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (16)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Pinto, Dalila (16)
Leboyer, Marion (11)
Marshall, Christian ... (9)
Gillberg, Christophe ... (8)
Bourgeron, Thomas (8)
Delorme, Richard (8)
visa fler...
Hakonarson, Hakon (8)
Oliveira, Guiomar (8)
Holt, Richard (7)
Maestrini, Elena (7)
Betancur, Catalina (7)
Bacchelli, Elena (6)
Battaglia, Agatino (6)
Duketis, Eftichia (6)
Fernandez, Bridget A (6)
Freitag, Christine M (6)
Klauck, Sabine M (6)
Poustka, Fritz (6)
Vincent, John B (6)
Zwaigenbaum, Lonnie (6)
Anney, Richard (5)
Regan, Regina (5)
Pagnamenta, Alistair ... (5)
Almeida, Joana (5)
Bailey, Anthony J (5)
Baird, Gillian (5)
Bolshakova, Nadia (5)
Bolton, Patrick F. (5)
Brennan, Sean (5)
Dawson, Geraldine (5)
Duque, Frederico (5)
Folstein, Susan E (5)
Fombonne, Eric (5)
Gilbert, John (5)
Green, Jonathan (5)
Kolevzon, Alexander (5)
Lord, Catherine (5)
Merikangas, Alison (5)
Nygren, Gudrun, 1957 (5)
Parr, Jeremy R (5)
Roberts, Wendy (5)
Roge, Bernadette (5)
Sato, Daisuke (5)
Soorya, Latha (5)
Thomson, Susanne (5)
Van Engeland, Herman (5)
Wallace, Simon (5)
Wing, Kirsty (5)
Wittemeyer, Kerstin (5)
Buxbaum, Joseph D (5)
visa färre...
Lärosäte
Göteborgs universitet (11)
Uppsala universitet (4)
Karolinska Institutet (4)
Umeå universitet (3)
Lunds universitet (3)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy