SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Podio L.) ;mspu:(conferencepaper)"

Sökning: WFRF:(Podio L.) > Konferensbidrag

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hoare, M. G., et al. (författare)
  • The cradle of life and the SKA
  • 2014
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • We provide an overview of the exciting capabilities of the SKA in the Cradle of Life theme. With the deployment of the high frequency band 5 receivers, the phase 1 of the SKA can conduct headline science in the study of the earliest stages of grain growth in proto-planetary disks. SKA1-MID can map the 2 cm continuum emission at a resolution of 4 au in the nearest systems and therefore begin to probe the distribuion of cm-sized particles across the snow line. This frequency range will also enable deep searches for pre-biotic molecules such as amino acids from pre-stellar cores to the cold, outer regions of proto-planetary disks where cometary material forms. The lowest frequency capabilities of SKA1 can be used to examine the magnetic fields of exo-planets via their auroral radio emission. This gives unique insight into their interiors and could potentially detect exo-moons. Across the full frequency range, the SKA1 will also carry out systematic, volume-limited searches of exo-planet systems for signals from technologically advanced civilizations. The sensitivity of SKA1 means that these only need to be at the level of typical airport radar signals in the nearest systems. Hence, the SKA1 can conduct high impact science from the first steps on the road to planets and life, through areas affecting the habitability of planets, and ultimately, to whether we are alone in the Galaxy. These inspirational themes will greatly help in the effort to bring SKA1 science to a wide audience and to ensure the progression to the full SKA.
  •  
2.
  • Ganga, P. L., et al. (författare)
  • Tensegrity rings for deployable space antennas : Concept, design, analysis, and prototype testing
  • 2016
  • Ingår i: Springer Optimization and Its Applications. - Cham : Springer Publishing Company. ; , s. 269-304
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we describe a tensegrity ring of innovative conception for deployable space antennas. Large deployable space structures are mission-critical technologies for which deployment failure cannot be an option. The difficulty to fully reproduce and test on ground the deployment of large systems dictates the need for extremely reliable architectural concepts. In 2010, ESA promoted a study focused on the pre-development of breakthrough architectural concepts offering superior reliability. This study, which was performed as an initiative of ESA Small Medium Enterprises Office by Kayser Italia at its premises in Livorno (Italy), with Università di Roma TorVergata (Rome, Italy) as sub-contractor and consultancy from KTH (Stockholm, Sweden), led to the identification of an innovative large deployable structure of tensegrity type, which achieves the required reliability because of a drastic reduction in the number of articulated joints in comparison with non-tensegrity architectures. The identified target application was in the field of large space antenna reflectors. The project focused on the overall architecture of a deployable system and the related design implications. With a view toward verifying experimentally the performance of the deployable structure, a reduced scale breadboard model was designed and manufactured. A gravity off-loading system was designed and implemented, so as to check deployment functionality in a 1-g environment. Finally, a test campaign was conducted, to validate the main design assumptions as well as to ensure the concept’s suitability for the selected target application. The test activities demonstrated satisfactory stiffness, deployment repeatability, and geometric precision in the fully deployed configuration. The test data were also used to validate a finite element model, which predicts a good static and dynamic behavior of the full-scale deployable structure.
  •  
3.
  • Zolesi, V. S., et al. (författare)
  • On an innovative deployment concept for large space structures
  • 2012
  • Ingår i: 42nd International Conference on Environmental Systems 2012, ICES 2012. - Reston, Virigina : American Institute of Aeronautics and Astronautics. - 9781600869341
  • Konferensbidrag (refereegranskat)abstract
    • Large deployable space structures are mission-critical technologies for which deployment failure cannot be an option. The difficulty to fully reproduce and test on ground the deployment of large systems dictates the need for extremely reliable architectural concepts. In 2010, ESA promoted a study focused at the pre-development of breakthrough architectural concepts offering superior reliability. The study, which was performed as an initiative of ESA Small Medium Enterprises Office (http://www.esa.int/SME/), by Kayser Italia at its premises in Livorno (Italy), with Universita' di Roma TorVergata (Rome, Italy) as sub-contractor and consultancy from KTH (Stockholm, Sweden), led to the identification of an innovative large deployable structure of "tensegrity" type, which achieves the required reliability because it permits a drastic reduction in the number of articulated joints in comparison with non-tensegrity architectures. The identified target application was in the field of large antenna reflectors. The project focused on the overall architecture of a deployable system and the related design implications. With a view toward verifying experimentally the performance of the deployable structure, a reduced-scale breadboard model was designed and manufactured. A gravity off-loading system was designed and implemented, so as to check deployment functionality in a 1-g environment. Finally, a test campaign was conducted, to validate the main design assumptions as well as to ensure the concept's suitability for the selected target application. The test activities demonstrated satisfactory stiffness, deployment repeatability, and geometric precision in the fully deployed configuration. The test data were also used to validate a finite element model, which predicts a good static and dynamic behavior of the full-scale deployable structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy