SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Pogge R. W.) "

form:Search_simp_t: WFRF:(Pogge R. W.)

  • navigation:Result_t 1-10 navigation:of_t 12
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  • Crenshaw, D. M., et al. (creator_code:aut_t)
  • Multiwavelength observations of short-timescale variability in NGC 4151. I. Ultraviolet observations
  • 1996
  • record:In_t: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 470:1, s. 322-335335
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Presents the results of an intensive ultraviolet monitoring campaign on the Seyfert 1 galaxy NGC 4151, as part of an effort to study its short-timescale variability over a broad range in wavelength. The nucleus of NGC 4151 was observed continuously with the International Ultraviolet Explorer for 9.3 days, yielding a pair of LWP and SWP spectra every ~70 minutes, and during 4 hr periods for 4 days prior to and 5 days after the continuous-monitoring period. The sampling frequency of the observations is an order of magnitude higher than that of any previous UV monitoring campaign on a Seyfert galaxy. The continuum fluxes in bands from 1275 to 2688 Aring went through four significant and well-defined ldquoeventsrdquo of duration 2-3 days during the continuous-monitoring period. The authors find that the amplitudes of the continuum variations decrease with increasing wavelength, which extends a general trend for this and other Seyfert galaxies to smaller timescales (i.e., a few days). The continuum variations in all the UV bands are simultaneous to within an accuracy of ~0.15 days, providing a strict constraint on continuum models. The emission-line light curves show only one major event during the continuous monitoring (a slow rise followed by a shallow dip) and do not correlate well with continuum light curves over the short duration of the campaign, because the timescale for continuum variations is apparently smaller than the response times of the emission lines
  •  
2.
  • Edelson, R. A., et al. (creator_code:aut_t)
  • Multiwavelength observations of short-timescale variability in NGC 4151. IV. Analysis of multiwavelength continuum variability
  • 1996
  • record:In_t: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 470:1, s. 364-377377
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • For pt.III see ibid., vol.470, no.1, p.349-63 (1996). Combines data from the three preceding papers in order to analyze the multi wave-band variability and spectral energy distribution of the Seyfert 1 galaxy NGC 4151 during the 1993 December monitoring campaign. The source, which was near its peak historical brightness, showed strong, correlated variability at X-ray, ultraviolet, and optical wavelengths. The strongest variations were seen in medium-energy (~1.5 keV) X-rays, with a normalized variability amplitude (NVA) of 24%. Weaker (NVA=6%) variations (uncorrelated with those at lower energies) were seen at soft gamma-ray energies of ~100 keV. No significant variability was seen in softer (0.1-1 keV) X-ray bands. In the ultraviolet/optical regime, the NVA decreased from 9% to 1% as the wavelength increased from 1275 to 6900 Aring. These data do not probe extreme ultraviolet (1200 Aring to 0.1 keV) or hard X-ray (250 keV) variability. The phase differences between variations in different bands were consistent with zero lag, with upper limits of lsim0.15 day between 1275 Aring and the other ultraviolet bands, lsim0.3 day between 1275 Aring and 1.5 keV, and lsim1 day between 1275 and 5125 Aring. These tight limits represent more than an order of magnitude improvement over those determined in previous multi-wave-band AGN monitoring campaigns. The ultraviolet fluctuation power spectra showed no evidence for periodicity, but were instead well fitted with a very steep, red power law (ales-2.5)
  •  
3.
  • Gould, A., et al. (creator_code:aut_t)
  • MOA-2010-BLG-523:" Failed Planet"= RS CVn Star
  • 2013
  • record:In_t: Astrophysical Journal. - 0004-637X. ; 763:2
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A(max) similar to 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.
  •  
4.
  • Ryu, Y. -H., et al. (creator_code:aut_t)
  • OGLE-2016-BLG-1190Lb : The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary
  • 2018
  • record:In_t: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 155:1
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/ bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planet's mass, M-p = 13.4 +/- 0.9 M-J, places it right at the deuteriumburning limit, i. e., the conventional boundary between planets and brown dwarfs. Its existence raises the question of whether such objects are really planets (formed within the disks of their hosts) or failed stars (lowmass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, M-host = 0.89. +/- 0.07 M-circle dot, and the planet has a semimajor axis a similar to 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth-Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over < 1% of an orbital period.
  •  
5.
  • De Rosa, G., et al. (creator_code:aut_t)
  • Velocity-resolved Reverberation Mapping of Five Bright Seyfert 1 Galaxies
  • 2018
  • record:In_t: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 866:2
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one active galactic nucleus (AGN) (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-H beta reverberation signatures, and (2) to look for velocity-dependent time delays that might be indicators of the gross kinematics of the broad-line region. We successfully measure H beta time delays and black hole masses for five AGNs, four of which have previous reverberation mass measurements. The values measured here are in agreement with earlier estimates, though there is some intrinsic scatter beyond the formal measurement errors. We observe velocity-dependent H beta lags in each case, and find that the patterns have changed in the intervening five years for three AGNs that were also observed in 2007.
  •  
6.
  • Han, C., et al. (creator_code:aut_t)
  • OGLE-2017-BLG-0329L : A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations
  • 2018
  • record:In_t: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 859:2
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Mass measurements of gravitational microlenses require one to determine the microlens parallax pE, but precise pE measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which pi(E) is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-pi(E) model at the 2 sigma level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector pE by factors similar to 18 and similar to 4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M-1, M-2) similar to (1.1, 0.8) M-circle dot or similar to(0.4, 0.3) M-circle dot according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken similar to 10 years after the event.
  •  
7.
  • Udalski, A., et al. (creator_code:aut_t)
  • OGLE-2017-BLG-1434Lb : Eighth q < 1 x 10(-4) Mass-Ratio Microlens Planet Confirms Turnover in Planet Mass-Ratio Function
  • 2018
  • record:In_t: Acta Astronomica. - 0001-5237. ; 68:1, s. 1-42
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • We report the discovery of a cold Super-Earth planet (m(p) = 4.4 +/- 0.5 M-circle plus) orbiting a low-mass (M = 0.23 +/- 0.03 M-circle dot) M dwarf at projected separation a(perpendicular to) l = 1.18 +/- 0.10 a.u., i.e., about 1.9 times the distance the snow line. The system is quite nearby for a microlensing planet, D-L = 0.86 +/- 0.09 kpc. Indeed, it was the large lens-source relative parallax pi(rel) = 1.0 mas (combined with the low mass M) that gave rise to the large, and thus well-measured, microlens parallax pi(E) proportional to (pi(rel)/M)(1)(/2) that enabled these precise measurements. OGLE-2017-BLG-1434Lb is the eighth microlensing planet with planet-host mass ratio q < 1 x 10(-4). We apply a new planet-detection sensitivity method, which is a variant of V/V-max, to seven of these eight planets to derive the mass-ratio function in this regime. We find dN/ d lnq proportional to q(P) , with p =1.05(-0.68)(+0.78), which confirms the turnover in the mass function found by Suzuki et al. relative to the power law of opposite sign n = -0.93 +/- 0.13 at higher mass ratios q greater than or similar to 2 x 10(-4). We combine our result with that of Suzuki et al. to obtain p = 0.73(-0.34)(+0.42.)
  •  
8.
  • Hirao, Yuki, et al. (creator_code:aut_t)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • record:In_t: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
9.
  • Sumi, T., et al. (creator_code:aut_t)
  • The first Neptune analog or super-earth with a Neptune-like orbit : MOA-2013-BLG-605LB
  • 2016
  • record:In_t: Astrophysical Journal. - 0004-637X. ; 825:2
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • We present the discovery of the first Neptune analog exoplanet or super-Earth with a Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at 9 ∼ 14 times the expected position of the snow line, a snow, which is similar to Neptune's separation of 11 a snow from the Sun. The planet/host-star mass ratio is q = (3.6 ± 0.7) × 10-4 and the projected separation normalized by the Einstein radius is s = 2.39 ± 0.05. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy." The three models have (i) a Neptune-mass planet with a mass of Mp = 21-7 +6M⊕ orbiting a low-mass M-dwarf with a mass of Mh = 0.19-0.06 +0.05M⊙, (ii) a mini-Neptune with Mp = 7.9-1.2 +1.8M⊕ orbiting a brown dwarf host with Mh = 0.068-0.011 +0.019M⊙, and (iii) a super-Earth with Mp = 3.2-0.3 +0.5MM⊕ orbiting a low-mass brown dwarf host with Mh = 0.025-0.0004 +0.005M⊙, which is slightly favored. The 3D planet-host separations are 4.6-1.2 +4.7au, 2.1-0.2 +1.0au, and 0.94-0.02 +0.67au, which are 8.9-1.4 +10.5, 12-1 +7, or 14-1 +11 times larger than a snow for these models, respectively. Keck adaptive optics observations confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbits are common. Therefore processes similar to the one that formed Neptune in our own solar system or cold super-Earths may be common in other solar systems.
  •  
10.
  • Berg, Danielle A., et al. (creator_code:aut_t)
  • The COS Legacy Archive Spectroscopy Survey (CLASSY) Treasury Atlas
  • 2022
  • record:In_t: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 261:2
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Far-ultraviolet (FUV; ∼1200–2000 Å) spectra are fundamental to our understanding of star-forming galaxies, providing a unique window on massive stellar populations, chemical evolution, feedback processes, and reionization. The launch of the James Webb Space Telescope will soon usher in a new era, pushing the UV spectroscopic frontier to higher redshifts than ever before; however, its success hinges on a comprehensive understanding of the massive star populations and gas conditions that power the observed UV spectral features. This requires a level of detail that is only possible with a combination of ample wavelength coverage, signal-to-noise, spectral-resolution, and sample diversity that has not yet been achieved by any FUV spectral database. We present the Cosmic Origins Spectrograph Legacy Spectroscopic Survey (CLASSY) treasury and its first high-level science product, the CLASSY atlas. CLASSY builds on the Hubble Space Telescope (HST) archive to construct the first high-quality (S/N1500 Å ≳ 5/resel), high-resolution (R ∼ 15,000) FUV spectral database of 45 nearby (0.002 < z < 0.182) star-forming galaxies. The CLASSY atlas, available to the public via the CLASSY website, is the result of optimally extracting and coadding 170 archival+new spectra from 312 orbits of HST observations. The CLASSY sample covers a broad range of properties including stellar mass (6.2 < log M⋆(M⊙) < 10.1), star formation rate (−2.0 < log SFR (M⊙ yr−1) < +1.6), direct gas-phase metallicity (7.0 < 12+log(O/H) < 8.8), ionization (0.5 < O32 < 38.0), reddening (0.02 < E(B − V) < 0.67), and nebular density (10 < ne (cm−3) < 1120). CLASSY is biased to UV-bright star-forming galaxies, resulting in a sample that is consistent with the z ∼ 0 mass–metallicity relationship, but is offset to higher star formation rates by roughly 2 dex, similar to z ≳ 2 galaxies. This unique set of properties makes the CLASSY atlas the benchmark training set for star-forming galaxies across cosmic time.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-10 navigation:of_t 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t