SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pokrovsky Oleg S.) ;hsvcat:1"

Sökning: WFRF:(Pokrovsky Oleg S.) > Naturvetenskap

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Krickov, Ivan V., et al. (författare)
  • Environmental controllers for carbon emission and concentration patterns in Siberian rivers during different seasons
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 859
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the importance of small and medium size rivers of Siberian boreal zone in greenhouse gases (GHG) emission, major knowledge gaps exist regarding its temporal variability and controlling mechanisms. Here we sampled 11 pristine rivers of the southern taiga biome (western Siberia Lowland, WSL), ranging in watershed area from 0.8 to 119,000 km2, to reveal temporal pattern and examine main environmental controllers of GHG emissions from the river water surfaces. Floating chamber measurements demonstrated that CO2 emissions from water surface decreased by 2 to 4-folds from spring to summer and autumn, were independent of the size of the watershed and stream order and did not exhibit sizable (>30 %, regardless of season) variations between day and night. The CH4 concentrations and fluxes increased in the order “spring ≤ summer < autumn” and ranged from 1 to 15 μmol L−1 and 5 to 100 mmol m−2 d−1, respectively. The CO2 concentrations and fluxes (range from 100 to 400 μmol L−1 and 1 to 4 g C m−2 d−1, respectively) were positively correlated with dissolved and particulate organic carbon, total nitrogen and bacterial number of the water column. The CH4 concentrations and fluxes were positively correlated with phosphate and ammonia concentrations. Of the landscape parameters, positive correlations were detected between riparian vegetation biomass and CO2 and CH4 concentrations. Over the six-month open-water period, areal emissions of C (>99.5 % CO2; <0.5 % CH4) from the watersheds of 11 rivers were equal to the total downstream C export in this part of the WSL. Based on correlations between environmental controllers (watershed land cover and the water column parameters), we hypothesize that the fluxes are largely driven by riverine mineralization of terrestrial dissolved and particulate OC, coupled with respiration at the river bottom and riparian sediments. It follows that, under climate warming scenario, most significant changes in GHG regimes of western Siberian rivers located in permafrost-free zone may occur due to changes in the riparian zone vegetation and water coverage of the floodplains.
  •  
3.
  • Lim, Artem G., et al. (författare)
  • Carbon emission and export from the Ket River, western Siberia
  • 2022
  • Ingår i: Biogeosciences. - : Copernicus Publications. - 1726-4170 .- 1726-4189. ; 19:24, s. 5859-5877
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite recent progress in the understanding of the carbon (C) cycle of Siberian permafrost-affected rivers, spatial and seasonal dynamics of C export and emission from medium-sized rivers (50 000-300 000 km2 watershed area) remain poorly known. Here we studied one of the largest tributaries of the Ob River, the Ket River (watershed Combining double low line 94 000 km2), which drains through pristine taiga forest of the boreal zone in the West Siberian Lowland (WSL). We combined continuous and discrete measurements of carbon dioxide (CO2) concentration using submersible CO2 sensor and floating chamber flux (FCO2), with methane (CH4), dissolved organic and inorganic C (DOC and DIC, respectively), particulate organic C and total bacterial concentrations over an 800 km transect of the Ket River main stem and its 26 tributaries during spring flood (May 2019) and 12 tributaries during summer baseflow (end of August-beginning of September 2019). The partial pressure of CO2 (pCO2) was lower and less variable in the main stem (2000 to 2500 μatm) compared to that in the tributaries (2000 to 5000 μatm). In the tributaries, the pCO2 was 40 % higher during baseflow compared to spring flood, whereas in the main stem, it did not vary significantly across the seasons. The methane concentration in the main stem and tributaries was a factor of 300 to 1900 (flood period) and 100 to 150 times lower than that of CO2 and ranged from 0.05 to 2.0 μmol L-1. The FCO2 ranged from 0.4 to 2.4 g C m-2 d-1 in the main channel and from 0.5 to 5.0 g C m-2 d-1 in the tributaries, being highest during August in the tributaries and weakly dependent on the season in the main channel. During summer baseflow, the DOC aromaticity, bacterial number, and needleleaf forest coverage of the watershed positively affected CO2 concentrations and fluxes. We hypothesize that relatively low spatial and seasonal variability in FCO2 of the Ket River is due to a flat homogeneous landscape (bogs and taiga forest) that results in long water residence times and stable input of allochthonous dissolved organic matter (DOM), which dominate the FCO2. The open water period (May to October) C emission from the fluvial network (main stem and tributaries) of the Ket River was estimated to 127 ± 11 Gg C yr-1, which is lower than the downstream dissolved and particulate C export during the same period. The estimated fluvial C emissions are highly conservative and contain uncertainties linked to ignoring hotspots and hot moments of emissions, notably in the floodplain zone. This stresses the need to improve the temporal resolution of FCO2 and water coverage across seasons and emphasizes the important role of WSL rivers in the release of CO2 into the atmosphere.
  •  
4.
  • Shirokova, Liudmila S., et al. (författare)
  • Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation
  • 2019
  • Ingår i: Biogeosciences. - : Nicolaus Copernicus University Press. - 1726-4170 .- 1726-4189. ; 16:12, s. 2511-2526
  • Tidskriftsartikel (refereegranskat)abstract
    • In contrast to the large number of studies on humic waters from permafrost-free regions and oligotrophic waters from permafrost-bearing regions, the bio- and photolability of DOM from the humic surface waters of permafrost-bearing regions has not been thoroughly evaluated. Following standardized protocol, we measured biodegradation (at low, intermediate and high temperatures) and photodegradation (at one intermediate temperature) of DOM in surface waters along the hydrological continuum (depression -> stream -> thermokarst lake -> Pechora River) within a frozen peatland in European Russia. In all systems, within the experimental resolution of 5% to 10 %, there was no bio- or photodegradation of DOM over a 1-month incubation period. It is possible that the main cause of the lack of degradation is the dominance of allochthonous refractory (soil, peat) DOM in all waters studied. However, all surface waters were supersaturated with CO2. Thus, this study suggests that, rather than bio- and photodegradation of DOM in the water column, other factors such as peat pore-water DOM processing and respiration of sediments are the main drivers of elevated pCO(2) and CO2 emission in humic boreal waters of frozen peat bogs.
  •  
5.
  • Kirpotin, Sergey N., et al. (författare)
  • Russian–EU collaboration via the mega-transect approach for large-scale projects : cases of RF Federal target Programme and SIWA JPI Climate EU Programme
  • 2018
  • Ingår i: International Journal of Environmental Studies. - : Routledge. - 0020-7233 .- 1029-0400. ; 75:3, s. 385-394
  • Tidskriftsartikel (refereegranskat)abstract
    • The mega-transect approach is a unique infrastructure which was developed in Tomsk State University for environmental monitoring and landscape-ecological research. The approach can be followed in all seasons, for field sampling, ground-based research on the field stations in combination with remote sensing and ecosystem manipulations. The mega-transect was established as a framework for the concept of Western Siberia as a natural mega-facility, a kind of natural equivalent to CERN’s Large Hadron Collider, to attract leading international research groups. The paper describes cases of Russian Federation Federal target Programme and Siberian Inland Waters Joint Programming Initiative Climate EU Programme as examples of the large-scale international projects which are now resulting.
  •  
6.
  • Krickov, Ivan V., et al. (författare)
  • Riverine particulate C and N generated at the permafrost thaw front : case study of western Siberian rivers across a 1700km latitudinal transect
  • 2018
  • Ingår i: Biogeosciences. - : Nicolaus Copernicus University Press. - 1726-4170 .- 1726-4189. ; 15:22, s. 6867-6884
  • Tidskriftsartikel (refereegranskat)abstract
    • In contrast to numerous studies on the dynamics of dissolved (< 0.45 mu m) elements in permafrost-affected highlatitude rivers, very little is known of the behavior of river suspended (> 0.45 mu m) matter (RSM) in these regions. In order to test the effect of climate, permafrost and physiogeographical landscape parameters (bogs, forest and lake coverage of the watershed) on RSM and particulate C, N and P concentrations in river water, we sampled 33 small and medium-sized rivers (10-100 000 km(2) watershed) along a 1700 km N-S transect including both permafrost-affected and permafrost-free zones of the Western Siberian Lowland (WSL). The concentrations of C and N in RSM decreased with the increase in river watershed size, illustrating (i) the importance of organic debris in small rivers which drain peatlands and (ii) the role of mineral matter from bank abrasion in larger rivers. The presence of lakes in the watershed increased C and N but decreased P concentrations in the RSM. The C V N ratio in the RSM reflected the source from the deep soil horizon rather than surface soil horizon, similar to that of other Arctic rivers. This suggests the export of peat and mineral particles through suprapermafrost flow occurring at the base of the active layer. There was a maximum of both particulate C and N concentrations and export fluxes at the beginning of permafrost appearance, in the sporadic and discontinuous zone (62-64 degrees N). This presumably reflected the organic matter mobilization from newly thawed organic horizons in soils at the active latitudinal thawing front. The results suggest that a northward shift of permafrost boundaries and an increase in active layer thickness may increase particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2, while P export may remain unchanged. In contrast, within a long-term climate warming scenario, the disappearance of permafrost in the north, the drainage of lakes and transformation of bogs to forest may decrease C and N concentrations in RSM by 2 to 3 times.
  •  
7.
  • Pokrovsky, Oleg S., et al. (författare)
  • Dissolved organic matter controls seasonal and spatial selenium concentration variability in thaw lakes across a permafrost gradient
  • 2018
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 52:18, s. 10254-10262
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the sources and processing of selenium, an important toxicant and essential micronutrient, within boreal and sub-arctic environments. Upon climate warming and permafrost thaw, the behavior of Se in northern peatlands becomes an issue of major concern, because a sizable amount of Se can be emitted to the atmosphere from thawing soils and inland water surfaces and exported to downstream waters, thus impacting the Arctic biota. Working toward providing a first-order assessment of spatial and temporal variation of Se concentration in thermokarst waters of the largest frozen peatland in the world, we sampled thaw lakes and rivers across a 750-km latitudinal profile. This profile covered sporadic, discontinuous, and continuous permafrost regions of western Siberia Lowland (WSL), where we measured dissolved (<0.45 mu m) Se concentration during spring (June), summer (August), and autumn (September). We found maximum Se concentration in the discontinuous permafrost zone. Considering all sampled lakes, Se exhibited linear relationship (R-2 = 0.7 to 0.9, p < 0.05, n approximate to 70) with dissolved organic carbon (DOC) concentration during summer and autumn. Across the permafrost gradient, the lakes in discontinuous permafrost regions demonstrated stronger relationship with DOC and UV-absorbance compared to lakes in sporadic/isolated and continuous permafrost zones. Both seasonal and spatial features of Se distribution in thermokarst lakes and ponds suggest that Se is mainly released during thawing of frozen peat. Mobilization and immobilization of Se within peat-lake-river watersheds likely occurs as organic and organo-Fe, Al colloids, probably associated with reduced and elemental Se forms. The increase of active layer thickness may enhance leaching of Se in the form of organic complexes with aromatic carbon from the deep horizons of the peat profile. Further, the northward shift of permafrost boundaries in WSL may sizably increase Se concentration in lakes of continuous permafrost zone.
  •  
8.
  • Vorobyev, Sergey N., et al. (författare)
  • Biogeochemistry of dissolved carbon, major, and trace elements during spring flood periods on the Ob River
  • 2019
  • Ingår i: Hydrological Processes. - : John Wiley & Sons. - 0885-6087 .- 1099-1085. ; 33:11, s. 1579-1594
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed knowledge of the flood period of Arctic rivers remains one of the few factors impeding rigorous prediction of the effect of climate change on carbon and related element fluxes from the land to the Arctic Ocean. In order to test the temporal and spatial variability of element concentration in the Ob River (western Siberia) water during flood period and to quantify the contribution of spring flood period to the annual element export, we sampled the main channel year round in 2014-2017 for dissolved C, major, and trace element concentrations. We revealed high stability (approximately <= 10% relative variation) of dissolved C, major, and trace element concentrations in the Ob River during spring flood period over a 1-km section of the river channel and over 3 days continuous monitoring (3-hr frequency). We identified two groups of elements with contrasting relationship to discharge: (a) DIC and soluble elements (Cl, SO4, Li, B, Na, Mg, Ca, P, V, Cr, Mn, As, Rb, Sr, Mo, Ba, W, and U) negatively correlated (p < 0.05) with discharge and exhibited minimal concentrations during spring flood and autumn high flow and (b) DOC and particle-reactive elements (Al, Fe, Ti, Y, Zr, Nb, Cs, REEs, Hf, Tl, Pb, and Th), some nutrients (K), and metalloids (Ge, Sb, and Te), positively correlated (p < 0.05) with discharge and showed the highest concentrations during spring flood. We attribute the decreased concentration of soluble elements with discharge to dilution by groundwater feeding and increased concentration of DOC and particle-reactive metals with discharge to leaching from surface soil, plant litter, and suspended particles. Overall, the present study provides first-order assessment of fluxes of major and trace elements in the middle course of the Ob River, reveals their high temporal and spatial stability, and characterizes the mechanism of river water chemical composition acquisition.
  •  
9.
  • Vorobyev, Sergey N., et al. (författare)
  • Permafrost Boundary Shift in Western Siberia May Not Modify Dissolved Nutrient Concentrations in Rivers
  • 2017
  • Ingår i: Water. - : MDPI AG. - 2073-4441. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the landscape and climate factors that control nutrient export by rivers in high latitude regions is one of the main challenges for understanding the Arctic Ocean response to ongoing climate change. This is especially true for Western Siberian rivers, which are responsible for a significant part of freshwater and solutes delivery to the Arctic Ocean and are draining vast permafrost-affected areas most vulnerable to thaw. Forty-nine small- and medium-sized rivers (10-100,000 km(2)) were sampled along a 1700 km long N-S transect including both permafrost-affected and permafrost-free zones of the Western Siberian Lowland (WSL) in June and August 2015. The N, P, dissolved organic and inorganic carbon (DOC and DIC, respectively), particular organic carbon (POC), Si, Ca, K, Fe, and Mn were analyzed to assess the role of environmental parameters, such as temperature, runoff, latitude, permafrost, bogs, lake, and forest coverage on nutrient concentration. The size of the watershed had no influence on nutrient concentrations in the rivers. Bogs and lakes retained nutrients whereas forests supplied P, Si, K, Ca, DIC, and Mn to rivers. The river water temperature was negatively correlated with Si and positively correlated with Fe in permafrost-free rivers. In permafrost-bearing rivers, the decrease in T northward was coupled with significant increases in PO4, P-tot, NH4, pH, DIC, Si, Ca, and Mn. North of the permafrost boundary (61 degrees N), there was no difference in nutrient concentrations among permafrost zones (isolated, sporadic, discontinuous, and continuous). The climate warming in Western Siberia may lead to a permafrost boundary shift northward. Using a substituting space for time scenario, this may decrease or maintain the current levels of N, P, Si, K, Ca, DIC, and DOC concentrations in rivers of continuous permafrost zones compared to the present state. As a result, the export flux of nutrients by the small- and medium-sized rivers of the Western Siberian subarctic to the Arctic Ocean coastal zone may remain constant, or even decrease.
  •  
10.
  • Zabelina, Svetlana A., et al. (författare)
  • Carbon emission from thermokarst lakes in NE European tundra
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:S1, s. S216-S230
  • Tidskriftsartikel (refereegranskat)abstract
    • Emission of greenhouse gases (GHGs) from inland waters is recognized as highly important and an understudied part of the terrestrial carbon (C) biogeochemical cycle. These emissions are still poorly quantified in subarctic regions that contain vast amounts of surface C in permafrost peatlands. This is especially true in NE European peatlands, located within sporadic to discontinuous permafrost zones which are highly vulnerable to thaw. Initial measurements of C emissions from lentic waters of the Bolshezemelskaya Tundra (BZT; 200,000 km2) demonstrated sizable CO2 and CH4 concentrations and fluxes to the atmosphere in 98 depressions, thaw ponds, and thermokarst lakes ranging from 0.5 × 106 to 5 × 106 m2 in size. CO2 fluxes decreased by an order of magnitude as waterbody size increased by > 3 orders of magnitude while CH4 fluxes showed large variability unrelated to lake size. By using a combination of Landsat‐8 and GeoEye‐1 images, we determined lakes cover 4% of BZT and thus calculated overall C emissions from lentic waters to be 3.8 ± 0.65 Tg C yr−1 (99% C‐CO2, 1% C‐CH4), which is two times higher than the lateral riverine export. Large lakes dominated GHG emissions whereas small thaw ponds had a minor contribution to overall water surface area and GHG emissions. These data suggest that, if permafrost thaw in NE Europe results in disappearance of large thermokarst lakes and formation of new small thaw ponds and depressions, GHG emissions from lentic waters in this region may decrease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (14)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
visa fler...
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
Grogan, Paul (1)
Guo, Laodong (1)
visa färre...
Lärosäte
Umeå universitet (15)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Uppsala universitet (1)
Stockholms universitet (1)
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy