SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Poleski R.) ;pers:(Pastorello A.)"

Sökning: WFRF:(Poleski R.) > Pastorello A.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brennan, S. J., et al. (författare)
  • Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5642-5665
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
  •  
2.
  • Brennan, S. J., et al. (författare)
  • Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5666-5685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
  •  
3.
  • Terreran, G., et al. (författare)
  • Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm
  • 2017
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:10, s. 713-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Type II supernovae are the final stage of massive stars (above 8 M-circle dot) which retain part of their hydrogen-rich envelope at the moment of explosion. They typically eject up to 15 M-circle dot of material, with peak magnitudes of -17.5 mag and energies in the order of 10(51) erg, which can be explained by neutrino-driven explosions and neutron star formation. Here, we present our study of OGLE-2014-SN-073, one of the brightest type II supernovae ever discovered, with an unusually broad lightcurve combined with high ejecta velocities. From our hydrodynamical modelling, we infer a remarkable ejecta mass of 60(-16)(+42) M-circle dot and a relatively high explosion energy of 12.4(-5.9)(+13.0) x 10(51) erg. We show that this object belongs, along with a very small number of other hydrogen-rich supernovae, to an energy regime that is not explained by standard core-collapse neutrino-driven explosions. We compare the quantities inferred by the hydrodynamical modelling with the expectations of various exploding scenarios and attempt to explain the high energy and luminosity released. We find some qualitative similarities with pair-instability supernovae, although the prompt injection of energy by a magnetar seems to be a viable alternative explanation for such an extreme event.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy