SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pols H. A. P.) "

Sökning: WFRF:(Pols H. A. P.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kerkhof, H. J. M., et al. (författare)
  • Recommendations for standardization and phenotype definitions in genetic studies of osteoarthritis: the TREAT-OA consortium
  • 2011
  • Ingår i: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 19:3, s. 254-264
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To address the need for standardization of osteoarthritis (OA) phenotypes by examining the effect of heterogeneity among symptomatic (SOA) and radiographic osteoarthritis (ROA) phenotypes. Methods: Descriptions of OA phenotypes of the 28 studies involved in the TREAT-OA consortium were collected. We investigated whether different OA definitions result in different association results by creating various hip OA definitions in one large population based cohort (the Rotterdam Study I (RSI)) and testing those for association with gender, age and body mass index using one-way ANOVA. For ROA, we standardized the hip-, knee- and hand ROA definitions and calculated prevalence's of ROA before and after standardization in nine cohort studies. This procedure could only be performed in cohort studies and standardization of SOA definitions was not feasible at this moment. Results: In this consortium, all studies with SOA phenotypes (knee, hip and hand) used a different definition and/or assessment of OA status. For knee-, hip- and hand ROA five, four and seven different definitions were used, respectively. Different hip ROA definitions do lead to different association results. For example, we showed in the RSI that hip OA defined as "at least definite joint space narrowing (JSN) and one definite osteophyte" was not associated with gender (P=0.22), but defined as "at least one definite osteophyte" was significantly associated with gender (P=3 x 10(-9)). Therefore, a standardization process was undertaken for ROA definitions. Before standardization a wide range of ROA prevalence's was observed in the nine cohorts studied. After standardization the range in prevalence of knee- and hip ROA was small. Conclusion: Phenotype definitions influence the prevalence of OA and association with clinical variables. ROA phenotypes within the TREAT-OA consortium were standardized to reduce heterogeneity and improve power in future genetics studies. (C) 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
  •  
2.
  • Oei, L., et al. (författare)
  • Genome-wide association study for radiographic vertebral fractures: A potential role for the 16q24 BMD locus
  • 2014
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 59, s. 20-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fracture applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5 x 10(-8). In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 x 10(-8). However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% Cl: 0.98-1.14; p = 0.17), displaying high degree of heterogeneity (I-2= 57%; Q(het)p = 0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures. (C) 2013 Elsevier Inc. All rights reserved.
  •  
3.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
4.
  •  
5.
  • Oei, Ling, et al. (författare)
  • A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus
  • 2014
  • Ingår i: Journal of Medical Genetics. - : BMJ Publishing Group. - 0022-2593 .- 1468-6244. ; 51:2, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Osteoporosis is a systemic skeletal disease characterised by reduced bone mineral density and increased susceptibility to fracture; these traits are highly heritable. Both common and rare copy number variants (CNVs) potentially affect the function of genes and may influence disease risk.AIM: To identify CNVs associated with osteoporotic bone fracture risk.METHOD: We performed a genome-wide CNV association study in 5178 individuals from a prospective cohort in the Netherlands, including 809 osteoporotic fracture cases, and performed in silico lookups and de novo genotyping to replicate in several independent studies.RESULTS: A rare (population prevalence 0.14%, 95% CI 0.03% to 0.24%) 210 kb deletion located on chromosome 6p25.1 was associated with the risk of fracture (OR 32.58, 95% CI 3.95 to 1488.89; p=8.69×10(-5)). We performed an in silico meta-analysis in four studies with CNV microarray data and the association with fracture risk was replicated (OR 3.11, 95% CI 1.01 to 8.22; p=0.02). The prevalence of this deletion showed geographic diversity, being absent in additional samples from Australia, Canada, Poland, Iceland, Denmark, and Sweden, but present in the Netherlands (0.34%), Spain (0.33%), USA (0.23%), England (0.15%), Scotland (0.10%), and Ireland (0.06%), with insufficient evidence for association with fracture risk.CONCLUSIONS: These results suggest that deletions in the 6p25.1 locus may predispose to higher risk of fracture in a subset of populations of European origin; larger and geographically restricted studies will be needed to confirm this regional association. This is a first step towards the evaluation of the role of rare CNVs in osteoporosis.
  •  
6.
  • Kanis, J A, et al. (författare)
  • The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women.
  • 2007
  • Ingår i: Osteoporosis international. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 18:8, s. 1033-46
  • Tidskriftsartikel (refereegranskat)abstract
    • SUMMARY: BMD and clinical risk factors predict hip and other osteoporotic fractures. The combination of clinical risk factors and BMD provide higher specificity and sensitivity than either alone. INTRODUCTION AND HYPOTHESES: To develop a risk assessment tool based on clinical risk factors (CRFs) with and without BMD. METHODS: Nine population-based studies were studied in which BMD and CRFs were documented at baseline. Poisson regression models were developed for hip fracture and other osteoporotic fractures, with and without hip BMD. Fracture risk was expressed as gradient of risk (GR, risk ratio/SD change in risk score). RESULTS: CRFs alone predicted hip fracture with a GR of 2.1/SD at the age of 50 years and decreased with age. The use of BMD alone provided a higher GR (3.7/SD), and was improved further with the combined use of CRFs and BMD (4.2/SD). For other osteoporotic fractures, the GRs were lower than for hip fracture. The GR with CRFs alone was 1.4/SD at the age of 50 years, similar to that provided by BMD (GR = 1.4/SD) and was not markedly increased by the combination (GR = 1.4/SD). The performance characteristics of clinical risk factors with and without BMD were validated in eleven independent population-based cohorts. CONCLUSIONS: The models developed provide the basis for the integrated use of validated clinical risk factors in men and women to aid in fracture risk prediction.
  •  
7.
  • Uitterlinden, André G, et al. (författare)
  • The association between common vitamin D receptor gene variations and osteoporosis : a participant-level meta-analysis
  • 2006
  • Ingår i: Annals of Internal Medicine. - 0003-4819. ; 145:4, s. 255-264
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Polymorphisms of the vitamin D receptor (VDR) gene have been implicated in the genetic regulation of bone mineral density (BMD). However, the clinical impact of these variants remains unclear.OBJECTIVE: To evaluate the relation between VDR polymorphisms, BMD, and fractures.DESIGN: Prospective multicenter large-scale association study.SETTING: The Genetic Markers for Osteoporosis consortium, involving 9 European research teams.PARTICIPANTS: 26,242 participants (18,405 women).MEASUREMENTS: Cdx2 promoter, FokI, BsmI, ApaI, and TaqI polymorphisms; BMD at the femoral neck and the lumbar spine by dual x-ray absorptiometry; and fractures.RESULTS: Comparisons of BMD at the lumbar spine and femoral neck showed nonsignificant differences less than 0.011 g/cm2 for any genotype with or without adjustments. A total of 6067 participants reported a history of fracture, and 2088 had vertebral fractures. For all VDR alleles, odds ratios for fractures were very close to 1.00 (range, 0.98 to 1.02) and collectively the 95% CIs ranged from 0.94 (lowest) to 1.07 (highest). For vertebral fractures, we observed a 9% (95% CI, 0% to 18%; P = 0.039) risk reduction for the Cdx2 A-allele (13% risk reduction in a dominant model).LIMITATIONS: The authors analyzed only selected VDR polymorphisms. Heterogeneity was detected in some analyses and may reflect some differences in collection of fracture data across cohorts. Not all fractures were related to osteoporosis.CONCLUSIONS: The FokI, BsmI, ApaI, and TaqI VDR polymorphisms are not associated with BMD or with fractures, but the Cdx2 polymorphism may be associated with risk for vertebral fractures.
  •  
8.
  • van Meurs, Joyce B, et al. (författare)
  • Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis.
  • 2008
  • Ingår i: JAMA : the journal of the American Medical Association. - Chicago : American Medical Association (AMA). - 1538-3598 .- 0098-7484. ; 299:11, s. 1277-90
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene cause rare syndromes characterized by altered bone mineral density (BMD). More common LRP5 variants may affect osteoporosis risk in the general population. OBJECTIVE: To generate large-scale evidence on whether 2 common variants of LRP5 (Val667Met, Ala1330Val) and 1 variant of LRP6 (Ile1062Val) are associated with BMD and fracture risk. DESIGN AND SETTING: Prospective, multicenter, collaborative study of individual-level data on 37,534 individuals from 18 participating teams in Europe and North America. Data were collected between September 2004 and January 2007; analysis of the collected data was performed between February and May 2007. Bone mineral density was assessed by dual-energy x-ray absorptiometry. Fractures were identified via questionnaire, medical records, or radiographic documentation; incident fracture data were available for some cohorts, ascertained via routine surveillance methods, including radiographic examination for vertebral fractures. MAIN OUTCOME MEASURES: Bone mineral density of the lumbar spine and femoral neck; prevalence of all fractures and vertebral fractures. RESULTS: The Met667 allele of LRP5 was associated with reduced lumbar spine BMD (n = 25,052 [number of participants with available data]; 20-mg/cm2 lower BMD per Met667 allele copy; P = 3.3 x 10(-8)), as was the Val1330 allele (n = 24,812; 14-mg/cm2 lower BMD per Val1330 copy; P = 2.6 x 10(-9)). Similar effects were observed for femoral neck BMD, with a decrease of 11 mg/cm2 (P = 3.8 x 10(-5)) and 8 mg/cm2 (P = 5.0 x 10(-6)) for the Met667 and Val1330 alleles, respectively (n = 25 193). Findings were consistent across studies for both LRP5 alleles. Both alleles were associated with vertebral fractures (odds ratio [OR], 1.26; 95% confidence interval [CI], 1.08-1.47 for Met667 [2001 fractures among 20 488 individuals] and OR, 1.12; 95% CI, 1.01-1.24 for Val1330 [1988 fractures among 20,096 individuals]). Risk of all fractures was also increased with Met667 (OR, 1.14; 95% CI, 1.05-1.24 per allele [7876 fractures among 31,435 individuals)]) and Val1330 (OR, 1.06; 95% CI, 1.01-1.12 per allele [7802 fractures among 31 199 individuals]). Effects were similar when adjustments were made for age, weight, height, menopausal status, and use of hormone therapy. Fracture risks were partly attenuated by adjustment for BMD. Haplotype analysis indicated that Met667 and Val1330 variants both independently affected BMD. The LRP6 Ile1062Val polymorphism was not associated with any osteoporosis phenotype. All aforementioned associations except that between Val1330 and all fractures and vertebral fractures remained significant after multiple-comparison adjustments. CONCLUSIONS: Common LRP5 variants are consistently associated with BMD and fracture risk across different white populations. The magnitude of the effect is modest. LRP5 may be the first gene to reach a genome-wide significance level (a conservative level of significance [herein, unadjusted P < 10(-7)] that accounts for the many possible comparisons in the human genome) for a phenotype related to osteoporosis.
  •  
9.
  • Kanis, J A, et al. (författare)
  • A family history of fracture and fracture risk: a meta-analysis.
  • 2004
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 35:5, s. 1029-37
  • Tidskriftsartikel (refereegranskat)abstract
    • The aims of the present study were to determine whether a parental history of any fracture or hip fracture specifically are significant risk factors for future fracture in an international setting, and to explore the effects of age, sex and bone mineral density (BMD) on this risk. We studied 34,928 men and women from seven prospectively studied cohorts followed for 134,374 person-years. The cohorts comprised the EPOS/EVOS study, CaMos, the Rotterdam Study, DOES and cohorts at Sheffield, Rochester and Gothenburg. The effect of family history of osteoporotic fracture or of hip fracture in first-degree relatives, BMD and age on all clinical fracture, osteoporotic fracture and hip fracture risk alone was examined using Poisson regression in each cohort and for each sex. The results of the different studies were merged from the weighted beta coefficients. A parental history of fracture was associated with a modest but significantly increased risk of any fracture, osteoporotic fracture and hip fracture in men and women combined. The risk ratio (RR) for any fracture was 1.17 (95% CI=1.07-1.28), for any osteoporotic fracture was 1.18 (95% CI=1.06-1.31), and for hip fracture was 1.49 (95% CI=1.17-1.89). The risk ratio was higher at younger ages but not significantly so. No significant difference in risk was seen between men and women with a parental history for any fracture (RR=1.17 and 1.17, respectively) or for an osteoporotic fracture (RR=1.17 and 1.18, respectively). For hip fracture, the risk ratios were somewhat higher, but not significantly higher, in men than in women (RR=2.02 and 1.38, respectively). A family history of hip fracture in parents was associated with a significant risk both of all osteoporotic fracture (RR 1.54; 95CI=1.25-1.88) and of hip fracture (RR=2.27; 95% CI=1.47-3.49). The risk was not significantly changed when BMD was added to the model. We conclude that a parental history of fracture (particularly a family history of hip fracture) confers an increased risk of fracture that is independent of BMD. Its identification on an international basis supports the use of this risk factor in case-finding strategies.
  •  
10.
  • Kanis, J A, et al. (författare)
  • A meta-analysis of previous fracture and subsequent fracture risk.
  • 2004
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 35:2, s. 375-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous fracture is a well-documented risk factor for future fracture. The aim of this study was to quantify this risk on an international basis and to explore the relationship of this risk with age, sex, and bone mineral density (BMD). We studied 15259 men and 44902 women from 11 cohorts comprising EVOS/EPOS, OFELY, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, DOES, Hiroshima, and two cohorts from Gothenburg. Cohorts were followed for a total of 250000 person-years. The effect of a prior history of fracture on the risk of any fracture, any osteoporotic fracture, and hip fracture alone was examined using a Poisson model for each sex from each cohort. Covariates examined were age, sex, and BMD. The results of the different studies were merged by using the weighted beta-coefficients. A previous fracture history was associated with a significantly increased risk of any fracture compared with individuals without a prior fracture (RR = 1.86; 95% CI = 1.75-1.98). The risk ratio was similar for the outcome of osteoporotic fracture or for hip fracture. There was no significant difference in risk ratio between men and women. Risk ratio (RR) was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any fracture (8%) and for hip fracture (22%). The risk ratio was stable with age except in the case of hip fracture outcome where the risk ratio decreased significantly with age. We conclude that previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by measurement of BMD. Its validation on an international basis permits the use of this risk factor in case finding strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (11)
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Mellström, Dan, 1945 (7)
Kanis, J. A. (5)
Johnell, Olof (5)
Reeve, J. (5)
Johansson, Helena, 1 ... (4)
Odén, Anders, 1942 (4)
visa fler...
Reid, David M (4)
Rivadeneira, Fernand ... (4)
Reeve, Jonathan (4)
Uitterlinden, André ... (4)
Ioannidis, John P. A ... (4)
Silman, A (4)
Ohlsson, Claes, 1965 (3)
Cooper, C. (3)
Delmas, P. (3)
Hallmans, Göran (3)
McCloskey, E. V. (3)
Ljunggren, Östen (3)
Brandi, Maria Luisa (3)
Hofman, Albert (3)
Obermayer-Pietsch, B ... (3)
Kiel, Douglas P. (3)
Karasik, David (3)
van Meurs, Joyce B. ... (3)
Karlsson, Magnus (2)
Vandenput, Liesbeth, ... (2)
Lorentzon, Mattias, ... (2)
McCloskey, E. (2)
Cooper, Cyrus (2)
Hofman, A (2)
Rivadeneira, F (2)
Thorleifsson, Gudmar (2)
Thorsteinsdottir, Un ... (2)
Stefansson, Kari (2)
Zhu, Kun (2)
McGuigan, Fiona E.A. (2)
Hsu, Yi-Hsiang (2)
Luben, Robert (2)
Uitterlinden, A. G. (2)
Kaptoge, Stephen K. (2)
Jameson, Karen A (2)
Svensson, Olle (2)
Cupples, L. Adrienne (2)
Renner, Wilfried (2)
Yoshimura, N (2)
Richards, J Brent (2)
Pettersson-Kymmer, U ... (2)
Slagboom, P. Eline (2)
Medina-Gomez, Caroli ... (2)
Estrada, Karol (2)
visa färre...
Lärosäte
Lunds universitet (10)
Göteborgs universitet (7)
Chalmers tekniska högskola (4)
Umeå universitet (3)
Uppsala universitet (3)
Handelshögskolan i Stockholm (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (11)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy