SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Polz Martin) "

Sökning: WFRF:(Polz Martin)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Alcamán, M. Estrella, et al. (författare)
  • Physiological and gene expression responses to nitrogen regimes and temperatures in Mastigocladus sp strain CHP1, a predominant thermotolerant cyanobacterium of hot springs
  • 2017
  • Ingår i: Systematic and Applied Microbiology. - : Elsevier BV. - 0723-2020 .- 1618-0984. ; 40:2, s. 102-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyanobacteria are widely distributed primary producers with significant implications for the global biogeochemical cycles of carbon and nitrogen. Diazotrophic cyanobacteria of subsection V (Order Stigonematales) are particularly ubiquitous in photoautotrophic microbial mats of hot springs. The Stigonematal cyanobacterium strain CHPI isolated from the Porcelana hot spring (Chile) was one of the major contributors of the new nitrogen through nitrogen fixation. Further morphological and genetic characterization verified that the strain CHP1 belongs to Stigonematales, and it formed a separate Glade together with other thermophiles of the genera Fischerella and Mastigocladus. Strain CHP1 fixed maximum N-2 in the light, independent of the temperature range. At 50 degrees C niJH gene transcripts showed high expression during the light period, whereas the nifH gene expression at 45 degrees C was arrhythmic. The strain displayed a high affinity for nitrate and a low tolerance for high ammonium concentrations, whereas the narB and glnA genes showed higher expression in light and at the beginning of the dark phase. It is proposed that Mastigocladus sp. strain CHPI would represent a good model for the study of subsection V thermophilic cyanobacteria, and for understanding the adaptations of these photoautotrophic organisms inhabiting microbial mats in hot springs globally.
  •  
3.
  • Fernández-Gómez, Beatriz, et al. (författare)
  • Bacterial community structure in a sympagic habitat expanding with global warming : brackish ice brine at 85-90 degrees N
  • 2019
  • Ingår i: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 13:2, s. 316-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Larger volumes of sea ice have been thawing in the Central Arctic Ocean (CAO) during the last decades than during the past 800,000 years. Brackish brine (fed by meltwater inside the ice) is an expanding sympagic habitat in summer all over the CAO. We report for the first time the structure of bacterial communities in this brine. They are composed of psychrophilic extremophiles, many of them related to phylotypes known from Arctic and Antarctic regions. Community structure displayed strong habitat segregation between brackish ice brine (IB; salinity 2.4-9.6) and immediate sub-ice seawater (SW; salinity 33.3-34.9), expressed at all taxonomic levels (class to genus), by dominant phylotypes as well as by the rare biosphere, and with specialists dominating IB and generalists SW. The dominant phylotypes in IB were related to Candidatus Aquiluna and Flavobacterium, those in SW to Balneatrix and ZD0405, and those shared between the habitats to Halomonas, Polaribacter and Shewanella. A meta-analysis for the oligotrophic CAO showed a pattern with Flavobacteriia dominating in melt ponds, Flavobacteriia and Gammaproteobacteria in solid ice cores, Flavobacteriia, Gamma- and Betaproteobacteria, and Actinobacteria in brine, and Alphaproteobacteria in SW. Based on our results, we expect that the roles of Actinobacteria and Betaproteobacteria in the CAO will increase with global warming owing to the increased production of meltwater in summer. IB contained three times more phylotypes than SW and may act as an insurance reservoir for bacterial diversity that can act as a recruitment base when environmental conditions change.
  •  
4.
  •  
5.
  •  
6.
  • Pontiller, Benjamin, MSc, 1985- (författare)
  • Molecular mechanisms involved in prokaryotic cycling of labile dissolved organic matter in the sea
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Roughly half of the global primary production originates from microscopic phytoplankton in marine ecosystems, converting carbon dioxide into organic matter. This organic matter pool consists of a myriad of compounds that fuel heterotrophic bacterioplankton. However, knowledge of the molecular mechanisms – particularly the metabolic pathways involved in the degradation and utilization of dissolved organic matter (DOM) – and transcriptional dynamics over spatiotemporal gradients are still scarce. Therefore, we studied the molecular mechanisms of bacterioplankton communities, including archaea, involved in the cycling of DOM, over different spatiotemporal scales in experiments and through field observations.In seawater experiments, we found a divergence of bacterioplankton transcriptional responses to different organic matter compound classes (carbohydrates, nucleic acids, and proteins) and condensation states (monomers or polymers). These responses were associated with distinct bacterial taxa, suggesting pronounced functional partitioning of these compounds in the Sea. Baltic Proper mesocosms amended with two different river loadings (forest versus agriculture river water) revealed a divergence in gene expression patterns between treatments during bloom decay. This was particularly true for genes in phosphorus and nitrogen metabolism, highlighting the importance and sensitivity of interaction effects between river- and phytoplankton-derived DOM in regulating bacterial activity responses to changes in precipitation-induced riverine runoff.In shipboard mesocosms in an Atlantic coastal upwelling system, we found significant changes in bacterioplankton transcription of hydrolyzing enzymes and membrane transporters from phytoplankton bloom development to senescence, primarily driven by phytoplankton-derived DOM and dissolved organic carbon dynamics. These responses differed substantially between bacterial orders, suggesting that functional resource partitioning is dynamically structured by temporal changes in DOM quantity and quality. Further analysis of these gene systems in a stratified fjord revealed pronounced divergence in transcription with depth and between bacterial taxa; moreover, transcription was more variable in the surface waters. This highlights the interplay between functional and physical partitioning of biogeochemical cycles. Collectively, the findings in this thesis contribute novel insights into the interdependency between prokaryotes and DOM by shedding light on the mechanisms involved in DOM cycling over ecologically relevant spatiotemporal scales.
  •  
7.
  • Starnawski, Piotr, et al. (författare)
  • Microbial community assembly and evolution in subseafloor sediment
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:11, s. 2940-2945
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change inmutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Polz, Martin (3)
Bertilsson, Stefan (2)
Díez, Beatriz (2)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
visa fler...
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Pollesello, Piero (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
Zhang, Weijia (1)
Li, Jian (1)
Marinello, Francesco (1)
Frilander, Mikko J. (1)
Wei, Pan (1)
Badie, Christophe (1)
Zhao, Jing (1)
Li, You (1)
Bansal, Abhisheka (1)
Rahman, Proton (1)
Parchi, Piero (1)
Alcamán, M. Estrella (1)
Alcorta, Jaime (1)
Bergman, Birgitta (1)
Vásquez, Mónica (1)
Ijzerman, Adriaan P. (1)
Subhash, Santhilal, ... (1)
Quinn, Terence J. (1)
visa färre...
Lärosäte
Uppsala universitet (4)
Stockholms universitet (3)
Göteborgs universitet (1)
Högskolan i Halmstad (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
visa fler...
Linnéuniversitetet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy