SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prentice Honor C) ;pers:(Schmid Barbara Christine)"

Sökning: WFRF:(Prentice Honor C) > Schmid Barbara Christine

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dalmayne, Jonas, et al. (författare)
  • Assessment of fine-scale plant species beta diversity using WorldView-2 satellite spectral dissimilarity
  • 2013
  • Ingår i: Ecological Informatics. - : Elsevier BV. - 1574-9541. ; 18:november, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant species beta diversity is influenced by spatial heterogeneity in the environment. This heterogeneity can potentially be characterised with the help of remote sensing. We used WorldView-2 satellite data acquired over semi-natural grasslands on The Baltic island of Öland (Sweden) to examine whether dissimilarities in remote sensing response were related to fine-scale, between-plot dissimilarity (beta diversity) in non-woody vascular plant species composition within the grasslands. Fieldwork, including the on-site description of a set of 30 2 m × 2 m plots and a set of 30 4 m × 4 m plots, was performed to record the species dissimilarity between pairs of same-sized plots. Spectral data were extracted by associating each plot with a suite of differently sized pixel windows, and spectral dissimilarity was calculated between pairs of same-sized pixel windows. Relationships between spectral dissimilarity and beta diversity were analysed using univariate regression and partial least squares regression. The study revealed significant positive relationships between spectral dissimilarity and fine-scale (2 m × 2 m and 4 m × 4 m) between-plot species dissimilarity. The correlation between the predicted and the observed species dissimilarity was stronger for the set of large plots (4 m × 4 m) than for the set of small plots (2 m × 2 m), and the association between spectral and species data at both plot scales decreased when pixel windows larger than 3 × 3 pixels were used. We suggest that the significant relationship between spectral dissimilarity and species dissimilarity is a reflection of between-plot environmental heterogeneity caused by differences in grazing intensity (which result in between-plot differences in field-layer height, and amounts of biomass and litter). This heterogeneity is reflected in dissimilarities in both the species composition and the spectral response of the grassland plots. Between-plot dissimilarities in both spectral response and species composition may also be caused by between-plot variations in edaphic conditions. Our results indicate that high spatial resolution satellite data may potentially be able to complement field-based recording in surveys of fine-scale species diversity in semi-natural grasslands.
  •  
2.
  • Purschke, Oliver, et al. (författare)
  • Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes
  • 2013
  • Ingår i: Journal of Ecology. - : Wiley. - 1365-2745 .- 0022-0477. ; 101:4, s. 857-866
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Theory predicts that the processes generating biodiversity after disturbance will change during succession. Comparisons of phylogenetic and functional (alpha and beta) diversity with taxonomic diversity can provide insights into the extent to which community assembly is driven by deterministic or stochastic processes, but comparative approaches have yet to be applied to successional systems. 2. We characterized taxonomic, phylogenetic and functional plant (alpha and beta) diversity within and between four successional stages in a > 270-year-long arable-to-grassland chronosequence. Null models were used to test whether functional and phylogenetic turnover differed from random expectations, given the levels of species diversity. 3. The three facets of diversity showed different patterns of change during succession. Between early and early-mid succession, species richness increased but there was no increase in functional or phylogenetic diversity. Higher than predicted levels of functional similarity between species within the early and early-mid successional stages, indicate that abiotic filters have selected for sets of functionally similar species within sites. Between late-mid and late succession, there was no further increase in species richness, but a significant increase in functional alpha diversity, suggesting that functionally redundant species were replaced by functionally more dissimilar species. Functional turnover between stages was higher than predicted, and higher than within-stage turnover, indicating that different assembly processes act at different successional stages. 4. Synthesis. Analysis of spatial and temporal turnover in different facets of diversity suggests that deterministic processes generate biodiversity during post-disturbance ecosystem development and that the relative importance of assembly processes has changed over time. Trait-mediated abiotic filtering appears to play an important role in community assembly during the early and early-mid stages of arable-to-grassland succession, whereas the relative importance of competitive exclusion appears to have increased towards the later successional stages. Phylogenetic diversity provided a poor reflection of functional diversity and did not contribute to inferences about underlying assembly processes. Functionally deterministic assembly suggests that it may be possible to predict future post-disturbance changes in biodiversity, and associated ecosystem attributes, on the basis of species’ functional traits but not phylogeny.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Prentice, Honor C (2)
Poschlod, Peter (1)
Sykes, Martin (1)
Durka, Walter (1)
Dalmayne, Jonas (1)
visa fler...
Möckel, Thomas (1)
Hall, Karin (1)
Purschke, Oliver (1)
Kühn, Ingolf (1)
Winter, Marten (1)
Michalski, Stefan (1)
visa färre...
Lärosäte
Lunds universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy