SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Puig S) ;lar1:(oru)"

Sökning: WFRF:(Puig S) > Örebro universitet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rothaug, J., et al. (författare)
  • Patients' perception of postoperative pain management : Validation of the international pain outcomes (IPO) questionnaire
  • 2013
  • Ingår i: Journal of Pain. - : Elsevier BV. - 1526-5900 .- 1528-8447. ; 14:11, s. 1361-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • PAIN OUT is a European Commission-funded project aiming at improving postoperative pain management. It combines a registry that can be useful for quality improvement and research using treatment and patient-reported outcome measures. The core of the project is a patient questionnaire - the International Pain Outcomes questionnaire - that comprises key patient-level outcomes of postoperative pain management, including pain intensity, physical and emotional functional interference, side effects, and perceptions of care. Its psychometric quality after translation and adaptation to European patients is the subject of this validation study. The questionnaire was administered to 9,727 patients in 10 languages in 8 European countries and Israel. Construct validity was assessed using factor analysis. Discriminant validity assessment used Mann-Whitney U tests to detect mean group differences between 2 surgical disciplines. Internal consistency reliability was calculated as Cronbach's alpha. Factor analysis resulted in a 3-factor structure explaining 53.6% of variance. Cronbach's alpha at overall scale level was high (.86), and for the 3 subscales was low, moderate, or high (range,.53-.89). Significant mean group differences between general and orthopedic surgery patients confirmed discriminant validity. The psychometric quality of the International Pain Outcomes questionnaire can be regarded as satisfactory. Perspective The International Pain Outcomes questionnaire provides an instrument for postoperative pain assessment and improvement of quality of care, which demonstrated good psychometric quality when translated into a variety of languages in a large European and Israeli patient population. This measure provides the basis for the first comprehensive postoperative pain registry in Europe and other countries. © 2013 by the American Pain Society.
  •  
2.
  • Gurung, Iman S., et al. (författare)
  • Deletion of the metabolic transcriptional coactivator PGC1β induces cardiac arrhythmia
  • 2011
  • Ingår i: Cardiovascular Research. - : Oxford University Press. - 0008-6363 .- 1755-3245. ; 92:1, s. 29-38
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Peroxisome proliferator-activated receptor-γ coactivators PGC1α and PGC1β modulate mitochondrial biogenesis and energy homeostasis. The function of these transcriptional coactivators is impaired in obesity, insulin resistance, and type 2 diabetes. We searched for transcriptomic, lipidomic, and electrophysiological alterations in PGC1β(-/-) hearts potentially associated with increased arrhythmic risk in metabolic diseases.METHODS AND RESULTS: Microarray analysis in mouse PGC1β(-/-) hearts confirmed down-regulation of genes related to oxidative phosphorylation and the electron transport chain and up-regulation of hypertrophy- and hypoxia-related genes. Lipidomic analysis showed increased levels of the pro-arrhythmic and pro-inflammatory lipid, lysophosphatidylcholine. PGC1β(-/-) mouse electrocardiograms showed irregular heartbeats and an increased incidence of polymorphic ventricular tachycardia following isoprenaline infusion. Langendorff-perfused PGC1β(-/-) hearts showed action potential alternans, early after-depolarizations, and ventricular tachycardia. PGC1β(-/-) ventricular myocytes showed oscillatory resting potentials, action potentials with early and delayed after-depolarizations, and burst firing during sustained current injection. They showed abnormal diastolic Ca(2+) transients, whose amplitude and frequency were increased by isoprenaline, and Ca(2+) currents with negatively shifted inactivation characteristics, with increased window currents despite unaltered levels of CACNA1C RNA transcripts. Inwardly and outward rectifying K(+) currents were all increased. Quantitiative RT-PCR demonstrated increased SCN5A, KCNA5, RYR2, and Ca(2+)-calmodulin dependent protein kinase II expression.CONCLUSION: PGC1β(-/-) hearts showed a lysophospholipid-induced cardiac lipotoxicity and impaired bioenergetics accompanied by an ion channel remodelling and altered Ca(2+) homeostasis, converging to produce a ventricular arrhythmic phenotype particularly during adrenergic stress. This could contribute to the increased cardiac mortality associated with both metabolic and cardiac disease attributable to lysophospholipid accumulation.
  •  
3.
  • Lagathu, C., et al. (författare)
  • Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity.
  • 2010
  • Ingår i: International Journal of Obesity. - London, United Kingdom : Nature Publishing Group. - 0307-0565 .- 1476-5497. ; 34:12, s. 1695-1705
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: The Wnt/β-catenin signaling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. In this study, we investigate the role of the Wnt antagonist, secreted frizzled-related protein 1 (SFRP1), in promoting adipogenesis in vitro and adipose tissue expansion in vivo.METHODS: We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1.RESULTS: SFRP1 is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis, and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signaling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high-fat-diet-fed mice, we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile, we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects.CONCLUSIONS: Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signaling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals.
  •  
4.
  • Medina-Gomez, Gema, et al. (författare)
  • PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism
  • 2007
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxisome proliferator activated receptor gamma 2 (PPARg2) is the nutritionally regulated isoform of PPARg. Ablation of PPARg2 in the ob/ob background, PPARg2(-/-) Lep(ob)/Lep(ob) (POKO mouse), resulted in decreased fat mass, severe insulin resistance, beta-cell failure, and dyslipidaemia. Our results indicate that the PPARg2 isoform plays an important role, mediating adipose tissue expansion in response to positive energy balance. Lipidomic analyses suggest that PPARg2 plays an important antilipotoxic role when induced ectopically in liver and muscle by facilitating deposition of fat as relatively harmless triacylglycerol species and thus preventing accumulation of reactive lipid species. Our data also indicate that PPARg2 may be required for the beta-cell hypertrophic adaptive response to insulin resistance. In summary, the PPARg2 isoform prevents lipotoxicity by (a) promoting adipose tissue expansion, (b) increasing the lipid-buffering capacity of peripheral organs, and (c) facilitating the adaptive proliferative response of beta-cells to insulin resistance.
  •  
5.
  • Pietiläinen, Kirsi H, et al. (författare)
  • Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans
  • 2011
  • Ingår i: PLoS biology. - : Public Library of Science. - 1544-9173 .- 1545-7885. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.
  •  
6.
  • Rodriguez-Cuenca, S., et al. (författare)
  • Sphingolipids and glycerophospholipids. : The "ying and yang" of lipotoxicity in metabolic diseases
  • 2017
  • Ingår i: Progress in lipid research. - Oxford, United Kingdom : Elsevier. - 0163-7827 .- 1873-2194. ; 66, s. 14-29
  • Forskningsöversikt (refereegranskat)abstract
    • Sphingolipids in general and ceramides in particular, contribute to pathophysiological mechanisms by modifying signalling and metabolic pathways. Here, we present the available evidence for a bidirectional homeostatic crosstalk between sphingolipids and glycerophospholipids, whose dysregulation contributes to lipotoxicity induced metabolic stress. The initial evidence for this crosstalk originates from simulated models designed to investigate the biophysical properties of sphingolipids in plasma membrane representations. In this review, we reinterpret some of the original findings and conceptualise them as a sort of "ying/yang" interaction model of opposed/complementary forces, which is consistent with the current knowledge of lipid homeostasis and pathophysiology. We also propose that the dysregulation of the balance between sphingolipids and glycerophospholipids results in a lipotoxic insult relevant in the pathophysiology of common metabolic diseases, typically characterised by their increased ceramide/sphingosine pools.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy